A Simplified Model for Effective Thermal Conductivity of Highly Porous Ceramic Fiber Insulation

Author(s):  
Nicholas P. G. Lumley ◽  
Emory Ford ◽  
Eric Minford ◽  
Jason M. Porter

Highly porous ceramic fiber insulations are beginning to be considered as a replacement for firebrick insulations in high temperature, high pressure applications by the chemical process industry. However, the implementation of such materials has been impeded by a lack of experimental data and predictive models, especially at high gas pressure. The goal of this work was to develop a general, applied thermophysical model to predict effective thermal conductivity, keff, of porous ceramic fiber insulation materials and to determine the temperature, pressure, and gas conditions under which natural convection is a possible mode of heat transfer. A model was developed which calculates keff as the sum of conduction, convection, and radiation partial conductivities. The model was validated using available experimental data, including laboratory measurements made by this research effort. Overall, it was concluded that natural convection is indeed possible for the most porous insulations at pressures exceeding 10 atm. Furthermore, keff for some example insulations was determined as a function of temperature, pressure, and gas environment.

1990 ◽  
Vol 112 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Won Soon Chang

A simple theoretical model based on combined series and parallel conduction for the effective thermal conductivity of fluid-saturated screens has been developed. The present model has been compared with the existing correlations and experimental data available in literature, and it has been found that the model is effective in predicting thermal conductivity. The study also demonstrates that it is important to include the actual thickness of the wire screen in order to calculate the porosity accurately.


Author(s):  
Kyle A. Brucker ◽  
Kyle T. Ressler ◽  
Joseph Majdalani

In this article, general canonical forms for the effective thermal conductivities of compact heat sink models are derived using perturbation tools. The resulting approximations apply to a large number of fundamental heat sink shapes used in natural convection applications. The effective thermal conductivity is a property that can be assigned to the porous block (i.e., volume of fluid) above the heat sink base that was once occupied by the fins. The increased thermal conductivity of the fluid entering the porous block produces a reduced thermal resistance that matches that of the original heat sink. The use of a compact representation is accompanied by substantial computational savings that promote faster optimization and communication between simulation analysts and design engineers. The generalized approximations for the effective thermal conductivity presented here are numerically verified.


2021 ◽  
Author(s):  
Mirko Siegert ◽  
Marcel Gurris ◽  
Erik Hans Saenger

<p>Within the scope of the present work, the pressure-dependent effective thermal conductivity of rock samples is simulated. Our workflow can be assigned to the field of digital rock physics. In a first step, a 3D micro-CT scan of a rock sample is taken. Subsequently, the resulting greyscale images are analysed and segmented depending on the occurring phases. Based on this data set, a computational mesh is created and the corresponding thermal conductivities are assigned to each phase. Finally the numerical simulations can be carried out.<br>For the representation of the pressure dependency we use the approach proposed by Saenger [1]. By making use of the watershed algorithm, boundaries between the individual grains of the rock sample are detected and assigned to an artificial contact phase. In the course of several simulations, the thermal conductivity of the contact phase is continuously increased. Starting with the thermal conductivity of the pore phase and ending with the thermal conductivity of the grain phase. A linear correlation is used to match the thermal conductivity of the contact phase with the pressure of a given experimental data set. This enables a direct comparison between simulation and measurement.<br>In a further step, the numerical model is calibrated to optimise the agreement between experimental data and simulation results. In particular, starting from two calibration points of the experimental data set, an adjustment of the thermal conductivities in the numerical model is carried out. While the thermal conductivity of the pore phase is held constant during the whole calibration process, thermal conductivities of the grain and contact phase are adjusted.</p><p>References<br>[1] Saenger et al. 2016. Analysis of high-resolution X-ray computed tomography images of Bentheim sandstone under elevated confining pressures. Geophysical Prospecting, 64(4), 848–859.</p><p> </p>


2017 ◽  
Vol 52 (15) ◽  
pp. 2047-2053 ◽  
Author(s):  
Yong-Jun Kim ◽  
Yu-Fei Tan ◽  
Sok Kim

Polymer composites filled with thermally conductive particles are widely used in thermo-electronic industry, and the prediction of effective properties is still important for design and use of composites. Thus, we propose a lattice Boltzmann model to predict the effective thermal conductivity of composites filled with carbon black. First, a method for reconstructing numerical material having filler distribution characteristic similar to that of actual material is introduced, and the process for obtaining the phase function and the volume fraction of grain filler is described. The energy transport governing equation is then solved through the two-dimensional discrete structure by using a lattice Boltzmann model. The effective thermal conductivity of two-phase composite is expressed by the conductivity of each phase and the temperature distribution in discrete rectangle. The resultant prediction is compared with theoretical and experimental data and indicates good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document