Relation Between Structural Intensity-Based Scalars and Sound Radiation Using the Example of Plate-Rib Models

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Clarissa Schaal ◽  
Johannes Ebert ◽  
Joachim Bös ◽  
Tobias Melz

The ability of the structural intensity (STI) to predict changes in the sound radiation of structures due to geometric modifications is investigated using the academic example of plate-rib models. All models consist of the same plate and are modified by attaching a rib, whose position, orientation, and length are varied. Various scalar quantities are derived from the STI and quantitatively compared to the equivalent radiated sound power (ERP) for each model. Based on this comparison the relation between the STI-based scalars and the ERP is studied to determine an STI-based scalar that can serve as the objective function for numerical structural optimizations. The influence of the rib parameters on the most promising STI-based scalar is analyzed by means of a variance-based sensitivity analysis. The STI pattern of those models with very high and very low ERP values are additionally analyzed to describe the characteristics of STI. The results of this study indicate that the STI pattern of models with low ERP has paths and vortices that can be more clearly identified compared to those in models with high ERP. The angular orientation of the rib has by far the highest influence on changes in STI and ERP. The results reveal a correlation between the energy flow into a specific region of a structure, an STI-based scalar, and the ERP. Therefore, the vibrational energy flow can indeed serve as an objective function for numerical structural optimizations aiming at reducing the sound radiation.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Tanmoy Bose ◽  
Amiya R. Mohanty

Here, sound radiation characteristics of a rectangular plate having a side crack of different crack lengths, orientations, and positions are studied considering clamped boundary conditions. First, a free and forced vibration response analysis of a cracked plate is done using the Ritz method. Orthogonal polynomials are used for faster convergence and some corner functions are used to generate the effect of a crack. Radiated sound power and radiation efficiency of the cracked plate are computed by the quadruple integration. A convergence test of radiation efficiency is carried out to fix the number of polynomials and corner functions in the analysis. It is found that the radiation efficiency and radiated sound power computed by the Ritz method are close to the same obtained from the boundary element method (BEM). The natural frequencies computed using the Ritz method are also found to be close to that obtained from the finite element method (FEM). The radiation efficiency curves of different modes are shown for a change in crack length, orientation and position. Finally, the variations of normalized sound power are shown to be due to a change in the crack parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Rui Tang ◽  
He Tian ◽  
Dajing Shang

Based on the fact that beam-type modes play the main role in determining the sound radiation from an underwater thin slender (length-to-radius ratio L/a>20) elastic cylindrical shell, an equivalent-beam method is proposed for calculating the low-frequency radiated sound power of underwater thin slender unstiffened and stiffened cylindrical shells. The natural bending frequencies of the cylindrical shell are calculated by analytical and numerical methods and used to solve equivalent Young’s modulus of the equivalent beam. This approach simplifies the vibration problem of the three-dimensional cylindrical shell into that of a two-dimensional beam, which can be used to simplify the calculation process of radiated sound power. Added mass is used to approximate the fluid-structure coupling, further simplifying the calculation process. Calculation examples of underwater simply supported unstiffened and stiffened cylindrical shells verify the proposed method by comparison with analytical and numerical results. Finally, the effects of the size and spacing of the stiffeners on the sound radiation characteristics of underwater free-free stiffened cylindrical shells are discussed. The proposed method can be extended to the rapid calculation of the sound radiation characteristics of underwater slender complex cylindrical shells in the low-frequency range.


2011 ◽  
Vol 291-294 ◽  
pp. 2105-2110
Author(s):  
Liang Jin Luo

From flat-plate flexural vibration and radiated sound power discussed the inherent relationship between panel vibration frequency of distributed mode loudspeaker and geometric parameters, impedance matrix of soundboard and studied the relationship between soundboard structure of polyester foam sandwich panel and distortion of loudspeaker. Experimental results showed that distortion increases as the cell size and compress modulus, cell ratio, cell open ratio and thickness increases, but the sound sensitivity decreases as the compress modulus increases.


2018 ◽  
Vol 211 ◽  
pp. 18005
Author(s):  
Marcel Clappier ◽  
Lothar Gaul

Electromagnetic noise in Electrical Machines (EMs) occurs due to vibrations caused by magnetic forces acting onto rotor and stator surface. This is the dominant source for the considered permanent-magnetic excited synchronous machine in this paper. The radiated electromagnetic noise is sequentially calculated by a Finite Element (FE) and Boundary Element (BE) computation. An electromagnetic FE model is created to determine magnetic forces. Structure-borne sound and rotor dynamics are calculated using a structural dynamic FE model for the EM housing and the rotor. In order to predict resonance frequencies and amplitudes as reliable as possible, it is important to know the direction-dependent stiffness of the laminated rotor stacks and mechanical joints as well as their structural damping. Thereby, the properties of the laminated stack can be determined experimentally by a shear and dilatation test. Mechanical joint properties can be modelled by Thin-Layer Elements (TLEs) and the overall damping by the model of constant hysteretic damping. The radiated sound power is determined by a direct BE computation. The influence of dynamic rotor eccentricity on radiated sound power is examined for a run-up of the EM. All FE models are verified by data from experimental modal analysis.


2011 ◽  
Vol 291-294 ◽  
pp. 1961-1964
Author(s):  
Guang Liang Zhao

This paper takes marine Kingsbury sliding thrust bearing as the research object and conducts the finite element dynamic analysis with the aid of ANSYS software. On this basis, the acoustic boundary element model of a sliding thrust bearing shell is established with the ANSYS dynamic analysis results as the boundary excitation conditions. Besides, the radiated sound power of the shell is calculated by indirect boundary element method in SYNOSISE software. The influence of different condition parameters on the radiated sound power of the shell is perceived through the analysis of several rotation-thrust conditions. As for the special structure of this kind of sliding-thrust bearing, this paper states the impact of the supporting structure performance parameters, the pad number and damp of shell on the shell radiated sound power. The optimized measure for the supporting structure and the plan concerning the pad number’s selection lays the theoretical basis for damping and noise-reducing research on marine sliding-thrust bearing and its rotor system.


2013 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Sascha Merz ◽  
Nicole Kessissoglou ◽  
Roger Kinns ◽  
Steffen Marburg

Sign in / Sign up

Export Citation Format

Share Document