vibration frequency
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 231)

H-INDEX

30
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Guangwei Zhou ◽  
Changzhao Qian ◽  
Changping Chen

As a new type of composite bridge, the dynamic structural characteristics of a tensioned string bridge need to be deeply studied. In this paper, based on the structural characteristics of a tensioned string bridge, the Rayleigh method is used to derive formulas for calculating the frequencies of vertical, antisymmetric and lateral bending vibrations. The characteristics of the vertical and lateral bending vibration frequencies are summarized. The fundamental frequencies of the antisymmetric vertical bending and lateral bending of the tensioned string bridge are the same as that of the single-span beam under the corresponding constraint conditions. The shape and physical characteristics of the main cable have no effect on the frequency. The vertical bending symmetrical vibration frequency of the tensioned string bridge is greater than the corresponding symmetrical vibration frequency of the simply supported beam. The shape and physical characteristics of the main cable have a greater impact on the vertical bending symmetrical vibration frequency than the lateral bending frequency, and the vertical bending symmetrical vibration frequency increases with an increasing rise-to-span ratio. The tension force of the main cable has no influence on the frequency of tensioned string bridges. The first-order frequency of the tensioned string bridge is generally the vertical bending symmetrical vibration frequency. By adopting a tensioned string bridge structure, the fundamental frequency of a structure can be greatly increased, thereby increasing the overall rigidity of the structure. Finally, an engineering example is applied with the finite element parameter analysis method to study the vibration frequency characteristics of the tensioned string bridge, which verifies the correctness of the formula derived in this paper. The finite element analysis results show that the errors between the derived formula in this paper and the finite element calculation results are less than 2%, indicating that the formula derived in this paper has high calculation accuracy and can meet the calculation accuracy requirements of engineering applications.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012046
Author(s):  
Kunpeng Sun ◽  
Lihong Yang ◽  
Jicheng Li

Abstract The spray dustless machine is an important environmental protection equipment for harnessing haze. The booster impeller of the spray dustless machine is one of the decisive factors of the booster capacity. The stability of the blade directly determines the reliability of the spray duster. In this paper, ANSYS Workbench is used to analyze the mechanical characteristics of a certain type of spray dustless blade. The results show that: under the rated condition, the maximum equivalent stress of the impeller is 55.6Mpa, which is far less than the allowable stress of the impeller material 415Mpa, the maximum deformation of the circumferential position at the bottom of the blade is 1.2mm, and other deformation positions are mainly the outer edge of the blade, which can be optimized later. The interference frequency is far away from the vibration frequency of the first two modes, so resonance will not occur.


2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Fan Chen ◽  
Gengsheng He ◽  
Shun Dong ◽  
Shunjun Zhao ◽  
Lin Shi ◽  
...  

The vibration produced by blasting excavation in urban underground engineering has a significant influence on the surrounding environment, and the strength of vibration intensity involves many influencing factors. In order to predict the space-time effects of blasting vibration more accurately, an automatic intelligent monitoring system is constructed based on the rough set fuzzy neural network blasting vibration characteristic parameter prediction model and the network blasting vibrator (TC-6850). By setting up the regional monitoring network of monitoring points, the obtained monitoring data are analyzed. An artificial intelligence model is used to predict the influence of stratum condition, excavation hole, and high-rise building on blasting vibration velocity and frequency propagation. The results show that the artificial intelligence prediction model based on a rough set fuzzy neural network can accurately reflect the formation attenuation effect, hollow effect, and building amplification effect of blasting vibration by effectively fuzzing and standardizing the influencing factors. The propagation of blasting vibration in a soil–rock composite stratum is closely related to the surrounding rock conditions with a noticeable elastic modulus effect. The hollow effect is regional, which has a significant influence on the surrounding ground and buildings. Besides, the blasting vibration of the excavated area is stronger than that of the unexcavated area. The propagation of blasting vibration on high-rise buildings was complicated, of which the peak vibration velocity is maximum at the lower level of the building and decreased with the rise of the floor gradually. The whip sheath effect appears at the top floor, which is related to the blasting vibration frequency and the building’s natural vibration frequency.


Author(s):  
Jing-Hong Mei ◽  
Jing-Lin Xiao ◽  
Yong Sun ◽  
Bin Zhang ◽  
Xiu-Juan Miao ◽  
...  

Anisotropy parabolic potential (APP) effects on ground state (GS) energy [Formula: see text] and the vibration frequency (VF) [Formula: see text] of weak-coupled magnetopolaron (MP) in asymmetric Gaussian quantum wells (AGQWs) were investigated using the linear combination operator and unitary transformation method. The obtained results showed that [Formula: see text] and [Formula: see text] were increased by increasing the barrier height [Formula: see text] of AGQWs as well as transverse and longitudinal confined strengths [Formula: see text] and [Formula: see text] of APP and decreased with increase in the asymmetric Gaussian confinement potential (AGCP) range [Formula: see text] and transverse and longitudinal effective confined lengths [Formula: see text] and [Formula: see text] of APP. Thus, the GS energy and VF of MP could be changed by adjusting the confinement parameters of the APP and AGCP. The study of quantum wells’ semiconductor materials has broad potential applications in semiconductor lasers, optoelectronic devices and quantum information.


2021 ◽  
Vol 7 (Special) ◽  
pp. 4-4
Author(s):  
Andrey Ivanov ◽  
◽  
Stanislav Trofimov

Vibration can significantly reduce the pulling force of machines. The crushing of the soil increases with the frequency of vibration of the organ, and it was found that the size of the pieces of soil depends on the ratio of the speed of the aggregate to the frequency of vibration of the organ. In addition, traction and fuel consumption are reduced compared to machines without vibrating implements. Reduced tractive effort is the most important indicator of the effectiveness of the use of vibrating tools. The purpose of the study is to study the effect of applying vibrations at different frequencies to a cultivator on its performance, as well as oscillatory motion at two frequencies and with constant amplitudes on the traction force of the working body and soil properties. It can be noted that the effect of vibration frequency on tractive effort is more important than the depth of tillage. These two factors are the main and most significant in terms of tractive effort. Working depth also has a significant effect on tractive power. It increases to 54% with an increase in the working depth from 100 to 200 mm. The result is the same with a depth of 300 to 400 mm. An increase in tractive effort occurs due to a higher additional soil pressure and an increase in frictional forces in the "soil-metal surface of the working body" system. Keywords: TILLAGE; OSCILLATORY MOVEMENTS; LOOSENING THE SOIL; VIBRATION


Author(s):  
Yuan Zhou ◽  
Tian Tian ◽  
Xiongfei Yu ◽  
Ran Ren ◽  
Liangcai Zhou ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaomeng Zang ◽  
Genhui Wang ◽  
Zichen Zhang

In order to accurately analyze the bending vibration frequency of the new composite box girder, the effects of web folding effect, shear lag, and shear deformation are comprehensively considered in this paper, and the elastic control differential equation and natural boundary conditions of the composite box girder are established by using the Hamilton principle. A one-span composite box girder with corrugated steel webs is used as a numerical example. The effects of height span ratio, width span ratio, web thickness, cantilever plate length, and fold effect on the vertical vibration frequency of the new composite box girder are analyzed. The results show that the analytical solution is in good agreement with the finite element solution. When considering the shear lag and fold effect, the vibration frequency of composite box girder decreases. With the increase in order, the influence of shear lag and fold effect on its frequency becomes stronger. The changes of height span ratio and web thickness of composite box girder have a great influence on its folding effect, while the changes of width span ratio and cantilever plate length have little influence on it. The conclusion can provide a reference for the design of medium section new composite bridge in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document