Maximizing Wind Energy Capture for Speed-Constrained Wind Turbines During Partial Load Operation

Author(s):  
Zeyu Yan ◽  
Victor Yu ◽  
Mohamed L. Shaltout ◽  
Matthew Chu Cheong ◽  
Dongmei Chen

With the development of wind turbine technology, more wind turbines operate in the partial load region, where one of the main objectives is to maximize captured wind energy. This paper presents the development of an optimal control framework to maximize wind energy capture for wind turbines with limited rotor speed ranges. Numerical optimal control (NOC) techniques were applied to search for the achievable maximum power coefficient, thus maximum wind energy capture. Augmentations of these optimal techniques significantly reduced the computational cost. Simulation results show that, in comparison with the traditional torque feedback and conventional optimal control algorithms, the proposed augmented optimal control algorithm increases the harvested energy while minimizing the computational expense for speed-constrained wind turbines during partial load operation.

2008 ◽  
Vol 128 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Bunlung Neammanee ◽  
Korawit Krajangpan ◽  
Somporn Sirisumrannukul ◽  
Somchai Chatratana

2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


Author(s):  
Andreas Schäfer ◽  
Ulrich Brandt-Pollmann ◽  
Moritz Diehl ◽  
Hans-Georg Bock ◽  
Johannes P. Schlöder

Sign in / Sign up

Export Citation Format

Share Document