Cost Requirements for a Small-Scale SOFC Fed From Agricultural-Derived Biogas

Author(s):  
Samuel Majerus ◽  
Dirk Lauinger ◽  
Jan Van herle

In this work, the use of fuel cells for valorizing agricultural-derived biogas in Switzerland is studied. The Swiss agricultural case is characterized by farms with small numbers of animals (20 cows) and high feed-in tariffs (FIT) for biogas-derived electricity (0.49 CHF/kWhel). Thus, small-scale biogas installations are reviewed and the possibility to couple them with solid oxide fuel cells (SOFCs) and photovoltaic (PV) panels is analyzed. To date, less than 5% of the Swiss agricultural biogas potential is used. It is possible to increase this value significantly up to 86% through the deployment of 2 kWel engines. The small size of the Swiss farm requires biogas installations in the kW-range. Small-scale biogas facilities are not profitable yet: the main challenge is to bring down the lifetime cost of the fuel cells to 11,000 CHF/kWel (considering a lifetime of ten years) and to reduce the investment cost (IC) of small-scale biogas facilities to around 9500 CHF/kWch. In the kW-range, solid oxide fuel cells (SOFCs) have higher electrical conversion efficiencies than internal combustion engines (ICEs). It is shown that SOFCs become competitive over combustion engines if the investment cost of the former decreases below 13,000 CHF/kWel for a lifetime of 11 years. Combining the biogas facility with a PV-battery system, which covers the digester's electricity needs, is found to be beneficial. A considerable reduction in the feed-in tariffs would make small- to medium-scale biogas installations unprofitable, at current cost. In order to reach a break-even under these conditions, the investment cost of the biogas plant needs to drop below 4000 CHF/kWch, whereas the investment cost of the SOFC needs to drop below 3400 CHF/kWel.

2021 ◽  
Vol 508 ◽  
pp. 230328
Author(s):  
Lukas Kistner ◽  
Fritjof L. Schubert ◽  
Christine Minke ◽  
Astrid Bensmann ◽  
Richard Hanke-Rauschenbach

Author(s):  
Helgi S. Fridriksson ◽  
Bengt Sunde´n ◽  
Jinliang Yuan ◽  
Martin Andersson

Solid oxide fuel cells (SOFCs) have the attractive feature to be able to make use of hydrocarbon fuels in their operation by reforming the fuel into pure hydrogen, either internally or externally. This can open up for a smoother transition from the existing hydro-carbon economy toward a more renewable hydrogen economy. Since both SOFCs and internal combustion (IC) engines can make use of hydrocarbon fuels, it is of interest to examine the major differences in their utilization of the hydrocarbons and investigate how this type of fuel contributes to the power output of the respective systems. Thereby, various advantages and disadvantages of their reactions are raised. It was shown that even though there are fundamental differences between SOFCs and IC engines, both types face similar problems in their designs. These problems mostly include material design and operation management, but even problems related to the chemical reactions, e.g., carbon deposition for SOFCs and pollutant formation for IC engines.


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

2015 ◽  
Vol 30 (10) ◽  
pp. 1043
Author(s):  
CHANG Xi-Wang ◽  
CHEN Ning ◽  
WANG Li-Jun ◽  
BIAN Liu-Zhen ◽  
LI Fu-Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document