Thermodynamic evaluation of small-scale systems with biomass gasifiers, solid oxide fuel cells with Ni/GDC anodes and gas turbines

2009 ◽  
Vol 190 (2) ◽  
pp. 461-475 ◽  
Author(s):  
P.V. Aravind ◽  
T. Woudstra ◽  
N. Woudstra ◽  
H. Spliethoff
Author(s):  
Stefano Campanari ◽  
Ennio Macchi

High temperature fuel cells are experiencing an increasing amount of attention thanks to the successful operation of prototype plants, including a multi-MW Molten Carbonate Fuel Cell (MCFC) demonstration plant and a hybrid Solid Oxide Fuel Cell (SOFC) gas turbine power plant. Both MCFCs and SOFCs are currently considered attractive for the integration with gas turbines in more complex “hybrid” plants, with projected performances that largely exceed combined cycles efficiencies even at a small-scale size and with an extremely low environmental impact. This paper compares the performances of MCFC and SOFC hybrid cycles. The comparison shows some advantages for the SOFC hybrid cycle in terms of plant simplicity and moderately higher efficiency.


Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

High temperature fuel cells, such as molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) can be integrated in a hybrid cycle with a gas turbine and a steam turbine and achieve overall lower heating value (LHV) efficiencies of about 70%. A hybrid cycle designed for cogeneration or tri-generation applications could lead to even higher overall LHV efficiencies. Tri-generation is the combined generation of power, heat and cooling from the same fuel source. The purpose of the present paper is to compare the performance of a 20MW MCFC system and a 20MW tubular SOFC system and assess their potential to cogeneration and tri-generation applications. The system includes a fuel cell, a gas turbine, a multiple pressure heat recovery steam generator (HRSG), a steam turbine and an absorption chiller (for cooling). The systems were designed and sized using GatecycleTM heat balance software by GE Enter Software, LLC. In order to optimize each system we developed curves showing LHV “electric” and “cogeneration” efficiency versus power for different ratios of “MCFC and SOFC fuel cell-to-gas turbines size.” At atmospheric pressure and at 675°C (1247°F) the 20MW MCFC system achieves “electric” efficiency of 69.5%. The SOFC at the same pressure and at 980°C achieves 67.3% “electric” efficiency. The MCFC alone is more efficient (58%) than the SOFC alone (56%). However the SOFC produces more heat than the MCFC leading to slightly higher cogeneration and tri-generation efficiencies. Pressurized operation at 9atm boosts the performance of the SOFC system to higher efficiencies (70.5%). Pressurized operation is problematic for the MCFC due to increased cathode corrosion leading to cathode dissolution as well as sealant and interconnection problems. However we can pressurize the MCFC system independently of the fuel cell with the integration of a gas turbine with a compressor pressure ratio of 10 to 16. Thus we achieve efficiencies close to 69%. In conclusion SOFC is more efficiently integrated in a hybrid configuration with gas turbine and a steam turbine for trigeneration applications when pressurized. MCFC is more efficiently integrated at atmospheric and pressures below 6 atm.


Author(s):  
Miriam Kemm ◽  
Andre Hildebrandt ◽  
Mohsen Assadi

Temperature limitations of Solid Oxide Fuel Cells (SOFC) in transient single operation and steady-state Hybrid System (HS) operation with Gas Turbines (GT) are presented. For transient SOFC simulations, an unsteady-state SOFC model was developed by upgrading a detailed validated steady-state model. As critical SOFC single operation modes, concerning the risk of material cracking due to exceeding SOFC transient temperature gradients, heat-up and cool-down are investigated. For minimization of transient SOFC temperature gradients at start-up and shut-down, a stepwise heat-up and cool-down procedure is proposed. Concerning HS off-design and part-load operation, the impact of SOFC temperature limitations on the operational window is investigated. Results show a reduced operational window due to exceeding local SOFC temperature gradients, which can be reduced by optimal adaptation of GT to SOFC size.


Author(s):  
Samuel Majerus ◽  
Dirk Lauinger ◽  
Jan Van herle

In this work, the use of fuel cells for valorizing agricultural-derived biogas in Switzerland is studied. The Swiss agricultural case is characterized by farms with small numbers of animals (20 cows) and high feed-in tariffs (FIT) for biogas-derived electricity (0.49 CHF/kWhel). Thus, small-scale biogas installations are reviewed and the possibility to couple them with solid oxide fuel cells (SOFCs) and photovoltaic (PV) panels is analyzed. To date, less than 5% of the Swiss agricultural biogas potential is used. It is possible to increase this value significantly up to 86% through the deployment of 2 kWel engines. The small size of the Swiss farm requires biogas installations in the kW-range. Small-scale biogas facilities are not profitable yet: the main challenge is to bring down the lifetime cost of the fuel cells to 11,000 CHF/kWel (considering a lifetime of ten years) and to reduce the investment cost (IC) of small-scale biogas facilities to around 9500 CHF/kWch. In the kW-range, solid oxide fuel cells (SOFCs) have higher electrical conversion efficiencies than internal combustion engines (ICEs). It is shown that SOFCs become competitive over combustion engines if the investment cost of the former decreases below 13,000 CHF/kWel for a lifetime of 11 years. Combining the biogas facility with a PV-battery system, which covers the digester's electricity needs, is found to be beneficial. A considerable reduction in the feed-in tariffs would make small- to medium-scale biogas installations unprofitable, at current cost. In order to reach a break-even under these conditions, the investment cost of the biogas plant needs to drop below 4000 CHF/kWch, whereas the investment cost of the SOFC needs to drop below 3400 CHF/kWel.


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document