Experimental Investigation and Three-Dimensional Numerical Analysis of Ferroconvection Through Horizontal Tube Under Magnetic Field of Fixed Parallel Magnet Bars

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Yahya Sheikhnejad ◽  
Mir Mehrdad Hosseini ◽  
Antonio Teixeira ◽  
Ali Shahpari ◽  
Reza Hosseini ◽  
...  

This study includes experimental and three-dimensional numerical analysis of conjugate steady-state laminar forced ferroconvection of Newtonian incompressible ferrofluid through a horizontal circular pipe under constant heat flux and in presence of transverse magnetic field. The magnetic field was applied by two fixed parallel magnet bars at the beginning of the tube. To validate the thermohydrodynamic characteristics obtained by numerical results, appropriate experimental setup with accurate instrumentations was conducted. Based on presence and absence of porous media and solid rod inside of pipe, six conditions were compared for quantifying the heat transfer enhancement and effectiveness. Governing equations were discretized by finite volume method (FVM) and solved using the semi-implicit method for pressure linked equations (SIMPLE) algorithm and computational fluid dynamic (CFD) techniques. It was found that magnetic field, porous media, and solid rod increase heat transfer and pressure loss in the pipe such that solid rod has the best effect on heat transfer and worst effect on effectiveness.

Author(s):  
G. Tomita ◽  
M. Kaneda ◽  
T. Tagawa ◽  
H. Ozoe

Three-dimensional numerical computations were carried out for the natural convection of air in a horizontal cylindrical enclosure in a magnetic field, which is modeled for a bore space of a horizontal superconducting magnet. The enclosure was cooled from the circumferential sidewall at the constant heat flux and vertical end walls were thermally insulated. A strong magnetic field was considered by a one-turn electric coil with the concentric and twice diameter of the cylinder. Without a magnetic field, natural convection occurs along the circumferential sidewall. When a magnetic field was applied, magnetizing force induced the additional convection, that is, the cooled air at the circumferential wall was attracted to the location of a coil. Consequently, the temperature around the coil decreased extensively.


2020 ◽  
Vol 58 (3) ◽  
pp. 400-409
Author(s):  
N. A. Luchinkin ◽  
N. G. Razuvanov ◽  
I. A. Belyaev ◽  
V. G. Sviridov

Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

Sign in / Sign up

Export Citation Format

Share Document