A Modified Runge–Kutta Method for Nonlinear Dynamical Systems With Conserved Quantities

2017 ◽  
Vol 12 (5) ◽  
Author(s):  
Guang-Da Hu

In this paper, explicit Runge–Kutta methods are investigated for numerical solutions of nonlinear dynamical systems with conserved quantities. The concept, ε-preserving is introduced to describe the conserved quantities being approximately retained. Then, a modified version of explicit Runge–Kutta methods based on the optimization technique is presented. With respect to the computational effort, the modified Runge–Kutta method is superior to implicit numerical methods in the literature. The order of the modified Runge–Kutta method is the same as the standard Runge–Kutta method, but it is superior in preserving the conserved quantities to the standard one. Numerical experiments are provided to illustrate the effectiveness of the modified Runge–Kutta method.

Author(s):  
Liming Dai ◽  
Xiaojie Wang ◽  
Changping Chen

Accuracy and reliability of the numerical simulations for nonlinear dynamical systems are investigated with fourth-order Runge–Kutta method and a newly developed piecewise-constant (P-T) method. Nonlinear dynamic systems with external excitations are studied and compared with the two numerical approaches. Semianalytical solutions for the dynamic systems are developed by the P-T approach. With employment of a periodicity-ratio (PR) method, the regions of regular and irregular motions are determined and graphically presented corresponding to the system parameters, for the comparison of accuracy and reliability of the numerical methods considered. Central processing unit (CPU) time executed in the numerical calculations with the two numerical methods are quantitatively investigated and compared under the same computational conditions. Due to its inherent drawbacks, as found in the research, Runge–Kutta method may cause information missing and lead to incorrect conclusions in comparing with the P-T method.


Author(s):  
Yu Ying ◽  
Mikhail D. Malykh

We implement several explicit Runge-Kutta schemes that preserve quadratic invariants of autonomous dynamical systems in Sage. In this paper, we want to present our package ex.sage and the results of our numerical experiments. In the package, the functions rrk_solve, idt_solve and project_1 are constructed for the case when only one given quadratic invariant will be exactly preserved. The function phi_solve_1 allows us to preserve two specified quadratic invariants simultaneously. To solve the equations with respect to parameters determined by the conservation law we use the elimination technique based on Grbner basis implemented in Sage. An elliptic oscillator is used as a test example of the presented package. This dynamical system has two quadratic invariants. Numerical results of the comparing of standard explicit Runge-Kutta method RK(4,4) with rrk_solve are presented. In addition, for the functions rrk_solve and idt_solve, that preserve only one given invariant, we investigated the change of the second quadratic invariant of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
M. Y. Liu ◽  
L. Zhang ◽  
C. F. Zhang

The implicit Runge–Kutta method with A-stability is suitable for solving stiff differential equations. However, the fully implicit Runge–Kutta method is very expensive in solving large system problems. Although some implicit Runge–Kutta methods can reduce the cost of computation, their accuracy and stability are also adversely affected. Therefore, an effective banded implicit Runge–Kutta method with high accuracy and high stability is proposed, which reduces the computation cost by changing the Jacobian matrix from a full coefficient matrix to a banded matrix. Numerical solutions and results of stiff equations obtained by the methods involved are compared, and the results show that the banded implicit Runge–Kutta method is advantageous to solve large stiff problems and conducive to the development of simulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Ademir L. Xavier Jr.

This paper shows how to apply a simple Runge-Kutta algorithm to get solutions of Kirchhoff equations for static filaments subjected to arbitrary external and static forces. This is done by suitably integrating at once Kirchhoff and filament reference system equations under appropriate initial boundary conditions. To show the application of the method, we display several numerical solutions for filaments including cases showing the effect of gravity.


2019 ◽  
Vol 17 ◽  
pp. 147-154
Author(s):  
Abhinandan Chowdhury ◽  
Sammie Clayton ◽  
Mulatu Lemma

We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered.


2019 ◽  
Vol 17 (1) ◽  
pp. 1515-1525
Author(s):  
Yazid Alhojilan

Abstract This paper aims to present a new pathwise approximation method, which gives approximate solutions of order $\begin{array}{} \displaystyle \frac{3}{2} \end{array}$ for stochastic differential equations (SDEs) driven by multidimensional Brownian motions. The new method, which assumes the diffusion matrix non-degeneracy, employs the Runge-Kutta method and uses the Itô-Taylor expansion, but the generating of the approximation of the expansion is carried out as a whole rather than individual terms. The new idea we applied in this paper is to replace the iterated stochastic integrals Iα by random variables, so implementing this scheme does not require the computation of the iterated stochastic integrals Iα. Then, using a coupling which can be found by a technique from optimal transport theory would give a good approximation in a mean square. The results of implementing this new scheme by MATLAB confirms the validity of the method.


Sign in / Sign up

Export Citation Format

Share Document