Assessment of Heat Transfer Enhancement Using Metallic Porous Foam Configurations in Laminar Slot Jet Impingement: An Experimental Study

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Chinige Sampath Kumar ◽  
Arvind Pattamatta

An experimental study using the liquid crystal thermography technique is conducted to investigate the convective heat transfer performance in jet impingement cooling using various porous media configurations. Aluminum porous foams are used in the present study. Four impinging jet configurations are considered: jet impingement (1) without porous media, (2) over the porous heat sink, (3) with porous obstacle case, and (4) through porous passage. These configurations are evaluated on the basis of the convective heat transfer enhancement for two different Reynolds numbers of 400 and 700. Jet impingement with porous heat sink showed deterioration in the average Nusselt number by 9.95% and 18.04% compared to jet impingement without porous media configuration for Reynolds numbers of 400 and 700, respectively. Jet impingement with porous obstacles showed a very negligible enhancement in the average Nusselt number by 3.48% and 2.73% for Reynolds numbers of 400 and 700, respectively. However, jet impingement through porous passage configuration showed a maximum enhancement in the average Nusselt number by 52.71% and 74.68% and stagnation Nusselt numbers by 58.08% and 53.80% compared to the jet impingement without porous medium for Reynolds numbers of 400 and 700, respectively. Within the porous properties considered, it is observed that by decreasing the permeability and porosity the convective heat transfer performance tends to increase.

Author(s):  
Sampath Kumar Chinige ◽  
Arvind Pattamatta

An experimental study using Liquid crystal thermography technique is conducted to study the convective heat transfer enhancement in jet impingement cooling in the presence of porous media. Aluminium porous sample of 10 PPI with permeability 2.48e−7 and porosity 0.95 is used in the present study. Results are presented for two different Reynolds number 400 and 700 with four different configurations of jet impingement (1) without porous foams (2) over porous heat sink (3) with porous obstacle case (4) through porous passage. Jet impingement with porous heat sink showed a deterioration in average Nusselt number by 10.5% and 18.1% for Reynolds number of 400 and 700 respectively when compared with jet impingement without porous heat sink configuration. The results show that for Reynolds number 400, jet impingement through porous passage augments average Nusselt number by 30.73% whereas obstacle configuration enhances the heat transfer by 25.6% over jet impingement without porous medium. Similarly for Reynolds number 700, the porous passage configuration shows average Nusselt number enhancement by 71.09% and porous obstacle by 33.4 % over jet impingement in the absence of porous media respectively.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Luis M. Candanedo ◽  
Andreas Athienitis ◽  
Kwang-Wook Park

This paper presents an experimental study for the development of convective heat transfer correlations for an open loop air-based building-integrated photovoltaic/thermal (BIPV/T) system. The BIPV/T system absorbs solar energy on the top surface, which includes the photovoltaic panels and generates electricity while also heating air drawn by a variable speed fan through a channel formed by the top roof surface with the photovoltaic modules and an insulated attic layer. The BIPV/T system channel has a length/hydraulic diameter ratio of 38, which is representative of a BIPV/T roof system for 30–45 deg tilt angles. Because of the heating asymmetry in the BIPV/T channel, two average Nusselt number correlations are reported as a function of Reynolds number: one for the top heated surface and the other for the bottom surface. For the top heated surface, the Nusselt number is in the range of 6–48 for Reynolds numbers ranging from 250 to 7500. For the bottom insulated surface, the Nusselt number is in the range of 22–68 for Reynolds numbers ranging from 800 to 7060. This paper presents correlations for the average Nusselt number as a function of Reynolds number; this correlation is considered adequate for the design of BIPV/T systems where forced convection dominates. Local Nusselt number distributions are also presented for laminar and turbulent flow conditions.


2019 ◽  
Vol 30 (4) ◽  
pp. 2169-2191 ◽  
Author(s):  
Fatih Selimefendigil ◽  
Ali J. Chamkha

Purpose The purpose of this study is to numerically analyze the convective heat transfer features for cooling of an isothermal surface with a cavity-like portion by using CuO-water nano jet. Jet impingement cooling of curved surfaces plays an important role in practical applications. As compared to flat surfaces, fluid flow and convective heat transfer features with jet impingement cooling of a curved surface becomes more complex with additional formation of the vortices and their interaction in the jet wall region. As flow separation and reattachment may appear in a wide range of thermal engineering applications such as electronic cooling, combustors and solar power, jet impingement cooling of a surface which has a geometry with potential separation regions is important from the practical point of view. Design/methodology/approach Numerical simulations were performed with a finite volume-based solver. The study was performed for various values of the Reynolds number (between 100 and 400), length of the cavity (between 5 w and 40 w), height of the cavity (between w and 5w) and solid nano-particle volume fraction (between 0 and 4 per cent). Artificial neural network modeling was used to obtain a correlation for the average Nusselt number, which can be used to obtain fast and accurate predictions. Findings It was observed that cavity geometrical parameters of the cooling surface can be adjusted to change the flow field and convective heat transfer features. When the cavity length is low, significant contribution of the inclined wall of the cavity on the average Nusselt number is achieved. As the cavity length and height increase, the average Nusselt number, respectively, reduce and slightly enhance. At the highest value of cavity height, significant changes in the convective flow features are obtained. By using nanofluids instead of water, enhancement of average heat transfer in the range of 35-46 per cent is obtained at the highest particle volume fraction. Originality/value In this study, jet impingement cooling of an isothermal surface which has a cavity-like portion was considered with nanofluids. Addition of this portion to the impingement surface has the potential to produce additional vortices which affects the fluid flow and convective features in the jet impingement heat transfer. This geometry has the forward-facing step for the wall jet region with flow separation reattachment in the region. Based on the above literature survey and to the best of the authors’ knowledge, jet impingement cooling for such a geometry has never been reported in the literature despite its importance in practical thermal engineering applications. The results of this study may be useful for design and optimization of such systems and to obtain best performance in terms of fluid flow and heat transfer characteristics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Zhi-Min Lin ◽  
Liang-Bi Wang

The secondary flow has been used frequently to enhance the convective heat transfer, and at the same flow condition, the intensity of convective heat transfer closely depends on the thermal boundary conditions. Thus far, there is less reported information about the sensitivity of heat transfer enhancement to thermal boundary conditions by using secondary flow. To account for this sensitivity, the laminar convective heat transfer in a circular tube fitted with twisted tape was investigated numerically. The effects of conduction in the tape on the Nusselt number, the relationship between the absolute vorticity flux and the Nusselt number, the sensitivity of heat transfer enhancement to the thermal boundary conditions by using secondary flow, and the effects of secondary flow on the flow boundary layer were discussed. The results reveal that (1) for fully developed laminar heat convective transfer, different tube wall thermal boundaries lead to different effects of conduction in the tape on heat transfer characteristics; (2) the Nusselt number is closely dependent on the absolute vorticity flux; (3) the efficiency of heat transfer enhancement is dependent on both the tube wall thermal boundaries and the intensity of secondary flow, and the ratio of Nusselt number with twisted tape to its counterpart with straight tape decreases with increasing twist ratio while it increases with increasing Reynolds number for both uniform wall temperature (UWT) and uniform heat flux (UHF) conditions; (4) the difference in the ratio between UWT and UHF conditions is also strongly dependent on the conduction in the tape and the intensity of the secondary flow; and (5) the twist ratio ranging from 4.0 to 6.0 does not necessarily change the main flow velocity boundary layer near tube wall, while Reynolds number has effects on the shape of the main flow velocity boundary layer near tube wall only in small regions.


2013 ◽  
Vol 388 ◽  
pp. 169-175 ◽  
Author(s):  
Amirhossein Heshmati ◽  
Hussein A. Mohammed ◽  
Mohammad Parsazadeh ◽  
Farshid Fathinia ◽  
Mazlan A. Wahid ◽  
...  

In this study, forced convective heat transfer is considered in channel over a backward facing step having a baffle on the top wall. Four different geometries with different expansion ratios and different type of baffles are numerically investigated. The study clearly shows that the geometry with expansion ratio 2 and solid baffle has the highest Nusselt number compared to other geometries. Considering both Nusselt number and skin friction coefficient for all four geometries clearly illustrated an increase in average Nusselt number by increasing the expansion ratio. This study clearly shows that mounting a slotted baffle at the top wall instead of a solid baffle caused a decline in average Nusselt number. It is also found that for geometry with expansion ratio of 3 and a slotted baffle on the top of the channel, skin friction coefficient in both bottom wall and step wall has its minimal compared to other geometries.


Sign in / Sign up

Export Citation Format

Share Document