Cost-Effective Light-Mixing Module for Solar-Lighting System Appended With Auxiliary RGBW Light-Emitting Diodes

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
An Chi Wei ◽  
Shih Chieh Lo ◽  
Ju-Yi Lee ◽  
Hong-Yih Yeh

A light-mixing module consisting of a compound parabolic concentrator (CPC) and a light-mixing tube is proposed herein to realize a uniform and efficient solar-lighting system. In this lighting system, the sunlight collected into a fiber and then guided to an indoor destination is the principal light source, while an auxiliary light source including multiple red, green, blue, and white (RGBW) light-emitting diodes (LEDs) is controlled by an auto-compensating module. To mix the principal and the auxiliary sources and to realize the uniform illumination, the light-mixing tube was coated with BaSO4 and optimized as a cylindrical tube. The design of the light-mixing tube is described and discussed in this article. According to the simulated results, the uniformity and the optical efficiency of the designed light-mixing tube are 82.9% and 85.7%, respectively, while from the experimental results, the uniformity of 85.9% and the optical efficiency of 83.3% have been obtained. In terms of the common indoor-lighting standards and the specifications of commercial components used in lighting systems, the proposed light-mixing module has demonstrated the high uniformity and acceptable optical efficiency. Additionally, since the main components of the light-mixing module can be designed as plastic optics, a cost-effective light-mixing module and a profitable lighting system can be realized. Thus, the performance and the price of the proposed light-mixing module fit the demands of the illumination market, while the proposed system shows the potential for indoor solar-lighting applications.

2013 ◽  
Vol 17 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Santosh M. Harish ◽  
Shuba V. Raghavan ◽  
Milind Kandlikar ◽  
Gireesh Shrimali

2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


1989 ◽  
Vol 20 (5) ◽  
pp. 205-217
Author(s):  
J Deforges ◽  
P Garcia ◽  
J Bastie ◽  
F Marandet ◽  
J Bernard ◽  
...  

2020 ◽  
Vol 19 (8) ◽  
pp. 1009-1021
Author(s):  
Tae-Rin Kwon ◽  
Sung-Eun Lee ◽  
Jong Hwan Kim ◽  
You Na Jang ◽  
Su-Young Kim ◽  
...  

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Andrew Chalmers ◽  
Snjezana Soltic

This paper is concerned with designing light source spectra for optimum luminous efficacy and colour rendering. We demonstrate that it is possible to design light sources that can provide both good colour rendering and high luminous efficacy by combining the outputs of a number of narrowband spectral constituents. Also, the achievable results depend on the numbers and wavelengths of the different spectral bands utilized in the mixture. Practical realization of these concepts has been demonstrated in this pilot study which combines a number of simulations with tests using real LEDs (light emitting diodes). Such sources are capable of providing highly efficient lighting systems with good energy conservation potential. Further research is underway to investigate the practicalities of our proposals in relation to large-scale light source production.


2017 ◽  
Vol 5 (1) ◽  
pp. 176-182 ◽  
Author(s):  
J. H. Jou ◽  
H. H. Yu ◽  
F. C. Tung ◽  
C. H. Chiang ◽  
Z. K. He ◽  
...  

A blue-hazard free, healthy light source will become the mainstream of future lighting wherein higher energy saving is always a must.


Sign in / Sign up

Export Citation Format

Share Document