Study on Effects of Heat Loss and Channel Deformation on Thermal-Hydraulic Performance of Semicircular Straight Channel Printed Circuit Heat Exchangers

Author(s):  
Su-Jong Yoon ◽  
James O'Brien ◽  
Piyush Sabharwall ◽  
Kevin Wegman ◽  
Xiaodong Sun

Effective and robust high-temperature heat transport systems are essential for the successful deployment of advanced high temperature reactors. The printed circuit heat exchanger (PCHE) is a strong potential candidate for the intermediate or secondary loop of high temperature gas-cooled reactors (HTGRs) due to their high power density and compactness. For high-temperature PCHE applications, the heat loss, which is difficult to be insulated completely, could lead to the degradation of heat exchanger performance. This paper describes an analytical methodology to evaluate the thermal-hydraulic performance of PCHEs from experimental data, accounting for extraneous heat losses. Experimental heat exchanger effectiveness results, evaluated without accounting for heat loss, exhibited significant data scatter while the data were in good agreement with the ε-NTU method once the heat loss was accounted for. The deformation of PCHEs would occur during the diffusion-bonding fabrication process or high temperature operations due to the thermal deformation. Computational assessment of the PCHE performance test data conducted at the Ohio State University showed that the deformation of flow channels caused increase of pressure loss of the heat exchanger. The computational fluid dynamics (CFD) simulation results based on the nominal design parameters underestimated the pressure loss of the heat exchanger compared to the experimental data. Image analysis for the flow channel inlet and outlet was conducted to examine the effect of channel deformation on the heat exchanger performance. The CFD analysis based on the equivalent channel diameter obtained from the image analysis resulted in a better prediction of PCHE pressure loss.

2022 ◽  
Vol 961 (1) ◽  
pp. 012010
Author(s):  
Ali M Aljelawy ◽  
Amer M Aldabbagh ◽  
Falah F Hatem

Abstract One of the most recently important heat exchangers is the Printed circuit heat exchanger especially in the nuclear power plant and aerospace applications due to its very compact geometry and small print foot. This paper presents a 3D numerical investigation on the thermo-hydraulic performance of PCHE with new non-uniform channel design configuration. The new channel design is a rectangular cross section with repeated converging diverging sections or periodic diamond shape. The influence of three design parameters on the heat exchanger performance was studied and optimized, pitch length (p), length ratio (β) and the converging diverging angle (α). The computational models investigated in this study based on the operating conditions of the intermediate heat exchanger of very high temperature gas cooled reactor with helium as the working fluid under operating pressure of 3Mpa and inlet temperature of 800 K. The Reynolds number varied from 200 to 2000. Different Pitch lengths were used (1.59, 3.18, 6.36, and 12.73) mm, and different C-D angle (0, 4.5, 6, 7.5, 9, 10.5 and 12) and also different length ratios were used (0.2, 0.25 and 0.333). Three performance parameters were studied the Nusselt number, friction factor and the overall performance evaluation factor. Results show that the thermal performance enhanced with decreasing the pitch length and with increasing C-D angle and it was shown that this enhancement was found only at high Reynolds number above 1400. The best performance obtained at p=3.18, α=6 and β=0.25 based on the overall evaluation performance.


2015 ◽  
Vol 89 ◽  
pp. 1087-1095 ◽  
Author(s):  
Ting Ma ◽  
Fei Xin ◽  
Lei Li ◽  
Xiang-yang Xu ◽  
Yi-tung Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document