Low-Complexity Passive Vehicle Suspension Design Based on Element-Number-Restricted Networks and Low-Order Admittance Networks

Author(s):  
Yinlong Hu ◽  
Michael Z. Q. Chen

This paper is concerned with the low-complexity passive suspension design problem, aiming at improving vehicle performance in the meanwhile maintaining simplicity in structure for passive suspensions. Two methods are employed to construct the low-complexity passive suspensions. Using the first method, the number of each element is restricted to one, and the performance for all networks with one inerter, one damper, and one spring is evaluated, where best configurations for different vehicle settings are identified. Using the second method, low-order admittance networks whose orders of admittance functions are no larger than three are utilized. Design methods are proposed by directly using the positive realness conditions imposed on the admittance functions. The effectiveness of the proposed methods is numerically demonstrated, and the comparison between these two constructing methods is conducted.

2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


2014 ◽  
Vol 984-985 ◽  
pp. 629-633
Author(s):  
Palanisamy Sathishkumar ◽  
Jeyaraj Jancirani ◽  
John Dennie

The present article introduces an approach that combines passive and active elements to improve the ride and passenger comfort. The main aim of vehicle suspension system should isolate the vehicle body from road unevenness for maintaining ride and passenger comfort. The ride and passenger comfort is improved by reducing the car body acceleration caused by the irregular road surface. The vehicle body along with the wheel system is modelled as two degrees of freedom one fourth of car model. The model is tested on road bump with severe peak amplitude excitations. In the conclusion, a comparison of active, semi-active and passive suspension is shown using MATLAB simulations.


Author(s):  
Roni H ◽  
Septiana Rizky Wulandari

ABSTRACTThe design and development of this product is a part of the abstract changes that exist in the business world. In a classroom measuring 9m x 8m that will be used to place a book storage cabinet for this activity does not take many places. Book storage cabinets like these require to place books according to the size of the shelves that are already designed using A4 paper rules. Designing a Book Storage Cabinet product using the Adiwiyata concept which means an environmental program by taking colors that have a natural impression, and cool and using a modern minimalist design style to fit the classroom that is not too spacious. With the design methods that have been done include: Design stages, Preliminery design, Problem formulation, Literature review, Analysis and design specifications, Design specifications, Design develoment, Final designs and prototypes. So that a book storage cabinet design has been produced that has a modern minimalist design style.Keywords: Cupboard, Storage, Books


Author(s):  
A. V. Balakrishnan

Abstract We present an explicit solution to a stochastic control problem generally referred to as the LQG (Linear Quadratic Gaussian) or Stochastic Regulator problem for continuum models of flexible structures with collocated rate sensors, which holds a fortiori for FEM or truncated modal models. Robustness properties accruing from the positive realness of the optimal compensator transfer function are described, and convergence of modal approximations is proved. Preliminary experimental results on the NASA LaRC SCOLE testbed are included.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Daniel R. Herber ◽  
James T. Allison

Here we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly effective due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems. One such challenge is the requirement to use simplified design problem elements/models; thus, the goal of these early-stage studies are to identify new architectures that are worth investigating more deeply. The results of higher-fidelity studies on a subset of high-performance architectures can then be used to select a final system architecture. In many aspects, the described problem class is the simplest case applicable to graph-representable, dynamic engineering systems.


2011 ◽  
Vol 148-149 ◽  
pp. 516-519
Author(s):  
Jun Tao Fei ◽  
Jing Xu

This paper attempts to establish the vibration control technology based on neural network control. First, the dynamic model of vehicle suspension system is discussed, and the linear passive suspension model and nonlinear spring suspension model of the vertical acceleration are compared. It is shown that the performance of nonlinear spring suspension is better than that of the linear passive suspension model. Because of the great advantages of the neural network in dealing with the nonlinear property, secondly, model reference neural control module is introduced in the suspension system to realize the optimization of the body vertical acceleration. Simulation results demonstrate the effectiveness of the neural network adaptive controller with application to vehicle suspension.


Author(s):  
M C Smith ◽  
G W Walker

This paper introduces a class of passive interconnected suspensions, defined mathematically in terms of their mechanical admittance matrices, with the purpose of providing greater freedom to specify independently bounce, pitch, roll, and warp dynamics than conventional (passive) suspension arrangements. Two alternative realization schemes are described that are capable of implementing this class (under ideal assumptions). The first scheme incorporates an interconnected multilever arrangement consisting of four separate hydraulic circuits, which transforms the separate wheel station displacements to bounce, pitch, roll, and warp motions. Four separate mechanical admittances are connected across the transformed terminals of the multilever. The second scheme is kinematically equivalent to the first but the multilever part consists of four modular subsystems to achieve the same kinematic transformation. The purpose of the class is to allow a high degree of independence between the modes of vehicle motion, e.g. low warp stiffness independent of front and rear anti-roll stiffness. Practical issues that might be involved in implementing the realization schemes are discussed, as well as generalizations to two-and six-wheeled vehicles.


Author(s):  
Демин ◽  
A. Demin ◽  
Исупов ◽  
S. Isupov ◽  
Хамитов ◽  
...  

The article shows the limited capacity of the traditional (passive) suspension systems to meet the constantly increasing requirements imposed on modern motor vehicles, as well as the expediency of application of controlled suspension systems. Modeling of processes in the system with the electromagnetic compensator stiffness in the free vibration mode in the software package Matlab Simulink.


2013 ◽  
Vol 471 ◽  
pp. 9-13 ◽  
Author(s):  
M.F. Soong ◽  
Rahizar Ramli ◽  
Wan Nor Liza Wan Mahadi

Inerter is a recent element in suspension systems with the property that the generated force is proportional to the relative acceleration between its two terminals, which is similar to the way a spring reacts to relative displacement and a damper to relative velocity. This paper presents the analysis of a non-linear inerter working in parallel to passive spring and damper of a vehicle suspension to evaluate its effect on vehicles ride. The non-linear inerter was theoretically capable of switching between on and off states depending on whether or not the suspension deflection was beyond a specified free play. In the study, this behavior was represented mathematically as control law which depended on the relative displacement between the sprung and unsprung masses. A mathematical quarter vehicle model incorporating the non-linear inerter was simulated in MATLAB/Simulink to determine the vehicle responses due to road input in the form of step profile for different combinations of free play and inerters on-state proportionality constant called the inertance. Results showed improvements in vehicle ride comfort, as demonstrated by the lower root-mean-squared sprung mass accelerations compared to the ordinary passive suspension with only spring and damper. Additionally, implementation of non-linear inerter gave lower percentage overshoot to step input, indicating better transient response than ordinary passive suspension.


Author(s):  
Daniel R. Herber ◽  
James T. Allison

Here we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly attractive due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4,374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems.


Sign in / Sign up

Export Citation Format

Share Document