Output Feedback Control Surface Positioning With a High-Order Sliding Mode Controller/Estimator: An Experimental Study on a Hydraulic Flight Actuation System

Author(s):  
Ali Şener Kaya ◽  
Mehmet Zeki Bilgin

In this paper, an output feedback sliding mode position controller/estimator scheme is proposed to control an single input single output (SISO) system subject to bounded nonlinearities and parametric uncertainties. Various works have been published addressing the theoretical effectiveness of the third-order sliding mode control (3-SMC) in terms of chattering alleviation and controller robustness. However, the application of 3-SMC with a feedback estimator to a flight actuators has not been treated explicitly. This is due to the fact that the accurate full state estimation is required since SMCs performance can be severely degraded by measurement or estimation noise. Aerodynamic control surface actuators in air vehicles mostly employ linear position controllers to achieve guidance and stability. The main focus of the paper is to experimentally demonstrate the stability and positioning performance of a third-order SMC applied to a class of system with high relative degree and bounded parametric uncertainties. The performance of the closed-loop system is also compared with a lower level SMC and classical controller to show the effectiveness of the algorithm. Realization of the proposed algorithm from an application perspective is the main target of this paper and it demonstrates that a shorter settling time and higher control action attenuation can be achieved with the proposed strategy.

Author(s):  
Jang-Hyun Park ◽  
Seong-Hwan Kim ◽  
Tae-Sik Park

A novel output-feedback controller for uncertain single-input single-output (SISO) nonaffine nonlinear systems is proposed using high-order sliding mode (HOSM) observer, which is a robust exact finite-time convergent differentiator. The proposed controller utilizes (n + 1)th-order HOSM observer to cancel the uncertainty and disturbance where n is the relative degree of the controlled system. As a result, the control law has an extremely simple form of linear in the differentiator states. It is required no separate sliding-mode controller or universal approximators such as neural networks (NNs) or fuzzy logic systems (FLSs) that are adaptively tuned online. The proposed controller guarantees finite time stability of the output tracking error.


2005 ◽  
Vol 128 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Kevin B. Fite ◽  
Jason E. Mitchell ◽  
Eric J. Barth ◽  
Michael Goldfarb

This paper describes the modeling and control of a proportional-injector direct-injection monopropellant-powered actuator for use in power-autonomous human-scale mobile robots. The development and use of proportional (as opposed to solenoid) injection valves enables a continuous and unified input/output description of the device, and therefore enables the development and implementation of a sliding-mode-type controller for the force control of the proposed actuator, which provides the stability guarantees characteristic of a sliding-mode control approach. Specifically, a three-input, single-output model of the actuation system behavior is developed, which takes a nonlinear non-control-canonical form. In order to implement a nonlinear controller, a constraint structure is developed that effectively renders the system single input, single output, and control canonical, and, thus, of appropriate form for the implementation of a sliding-mode controller. A sliding-mode controller is then developed and experimentally implemented on the proposed actuator. Experimental results demonstrate closed-loop force tracking with a saturation-limited bandwidth of approximately 6Hz.


2017 ◽  
Vol 24 (19) ◽  
pp. 4604-4619 ◽  
Author(s):  
K Zhang ◽  
S Manaffam ◽  
P Marzocca ◽  
A Behal

In this paper, a robust output feedback control design is developed for suppression of aeroelastic vibration of a 2-DOF nonlinear wing section system. The aeroelastic system operates in a quasi-steady aerodynamic incompressible flowfield and is actuated using a combination of a leading-edge (LE) and a trailing-edge (TE) flap. By only utilizing measurements of pitching and plunging deflections, an innovative Lyapunov-based procedure is used to design sliding mode control inputs for the LE and TE control surface deflections. The closed-loop system is shown to have semi-global asymptotic stability even in the presence of model uncertainty and unknown external gust loading. Extensive simulation results under a variety of scenarios show the effectiveness of the control strategy.


Author(s):  
K I Aziz ◽  
M Thomson

This paper describes how the minimal controller synthesis (MCS) algorithm is combined with the minimal observer synthesis (MOS) algorithm to produce an output feedback control structure in which no prior knowledge of plant state parameters is required. While the principal results relate to single-input single-output (SISO) systems, extensions to a particular class of multi-variable systems is discussed. Implementation and simulation examples are included to illustrate the effectiveness of the proposed scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Assil Ayadi ◽  
Soufien Hajji ◽  
Mohamed Smaoui ◽  
Abdessattar Chaari

This paper aims to propose and develop an adaptive moving sliding mode controller (AMSMC) that can be applied for nonlinear single-input single-output (SISO) systems with external disturbances. The main contribution of this framework consists to overcome the chattering phenomenon problem. The discontinuous term of the classic sliding mode control is replaced by an adaptive term. Moreover, a moving sliding surface is proposed to have better tracking and to guarantee robustness to the external disturbances. The parameters of the sliding surface and the adaptive law are deduced based on Lyapunov stability analysis. An experimental application of electropneumatic system is treated to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document