Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Yanan Ding ◽  
Sixu Zheng ◽  
Xiaoyan Meng ◽  
Daoyong Yang

In this study, a novel technique of low salinity hot water (LSHW) injection with addition of nanoparticles has been developed to examine the synergistic effects of thermal energy, low salinity water (LSW) flooding, and nanoparticles for enhancing heavy oil recovery, while optimizing the operating parameters for such a hybrid enhanced oil recovery (EOR) method. Experimentally, one-dimensional displacement experiments under different temperatures (17 °C, 45 °C, and 70 °C) and pressures (about 2000–4700 kPa) have been performed, while two types of nanoparticles (i.e., SiO2 and Al2O3) are, respectively, examined as the additive in the LSW. The performance of LSW injection with and without nanoparticles at various temperatures is evaluated, allowing optimization of the timing to initiate LSW injection. The corresponding initial oil saturation, production rate, water cut, ultimate oil recovery, and residual oil saturation profile after each flooding process are continuously monitored and measured under various operating conditions. Compared to conventional water injection, the LSW injection is found to effectively improve heavy oil recovery by 2.4–7.2% as an EOR technique in the presence of nanoparticles. Also, the addition of nanoparticles into the LSHW can promote synergistic effect of thermal energy, wettability alteration, and reduction of interfacial tension (IFT), which improves displacement efficiency and thus enhances oil recovery. It has been experimentally demonstrated that such LSHW injection with the addition of nanoparticles can be optimized to greatly improve oil recovery up to 40.2% in heavy oil reservoirs with low energy consumption. Theoretically, numerical simulation for the different flooding scenarios has been performed to capture the underlying recovery mechanisms by history matching the experimental measurements. It is observed from the tuned relative permeability curves that both LSW and the addition of nanoparticles in LSW are capable of altering the sand surface to more water wet, which confirms wettability alteration as an important EOR mechanism for the application of LSW and nanoparticles in heavy oil recovery in addition to IFT reduction.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1849
Author(s):  
Jinjian Hou ◽  
Lingyu Sun

In recent years, unconventional oils have shown a huge potential for exploitation. Abundant reserves of carbonate asphalt rocks with a high oil content have been found; however, heavy oil and carbonate minerals have a high interaction force, which makes oil-solid separation difficult when using traditional methods. Although previous studies have used nanofluids or surfactant alone to enhance oil recovery, the minerals were sandstones. For carbonate asphalt rocks, there is little research on the synergistic effect of nanofluids and surfactants on heavy oil recovery by hot-water-based extraction. In this study, we used nanofluids and surfactants to enhance oil recovery from carbonate asphalt rocks synergistically based on the HWBE process. In order to explore the synergistic mechanism, the alterations of wettability due to the use of nanofluids and surfactants were studied. Nanofluids alone could render the oil-wet calcite surface hydrophilic, and the resulting increase in hydrophilicity of calcite surfaces treated with different nanofluids followed the order of SiO2 > MgO > TiO2 > ZrO2 > γ-Al2O3. The concentration, salinity, and temperature of nanofluids influenced the oil-wet calcite wettability, and for SiO2 nanofluids, the optimal nanofluid concentration was 0.2 wt%; the optimal salinity was 3 wt%; and the contact angle decreased as the temperature increased. Furthermore, the use of surfactants alone made the oil-wet calcite surface more hydrophilic, according to the following order: sophorolipid (45.9°) > CTAB (49°) > rhamnolipid (53.4°) > TX-100 (58.4°) > SDS (67.5°). The elemental analysis along with AFM and SEM characterization showed that nanoparticles were adsorbed onto the mineral surface, resulting in greater hydrophilicity of the oil-wet calcite surface, and the roughness was related to the wettability. Surfactant molecules could aid in the release of heavy oil from the calcite surface, which exposes the uncovered calcite surface to its surroundings; additionally, some surfactants adsorbed onto the oil-wet calcite surface, and the combined role made the oil-wet calcite surface hydrophilic. In conclusion, the study showed that hybrid nanofluids showed a better effect on wettability alteration, and the use of nanofluids and surfactants together resulted in synergistic alteration of oil-wet calcite surface wettability.


2016 ◽  
Vol 147 ◽  
pp. 361-370 ◽  
Author(s):  
Zhengbin Wu ◽  
Huiqing Liu ◽  
Zhanxi Pang ◽  
Yalong Wu ◽  
Xue Wang ◽  
...  

2015 ◽  
Vol 13 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Yahya Al-Wahaibi ◽  
Hamoud Al-Hadrami ◽  
Saif Al-Bahry ◽  
Abdulkadir Elshafie ◽  
Ali Al-Bemani ◽  
...  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012141
Author(s):  
I M Indrupskiy ◽  
A D Bukatkina

Abstract Representation of wells in numerical simulation of petroleum reservoirs is a challenging task due to large difference in typical scales of grid blocks (tens to hundreds meters) and wells (~0.1 m), with high pressure and saturation gradients around wells. Although a variety of grid refinement techniques can be used for local simulations, they have limited application in field-scale problems due to huge model dimensions. Thus, auxiliary quasi-stationary local solutions (so-called inflow performance relations) are used to relate well flow rate with well and grid block pressures. These auxiliary solutions are strictly derived for linear cases and generalized to non-linear problems by using grid-block averaged values of fluid and reservoir properties. In the case of hot water injection for heavy oil recovery, this results in significant errors in well injectivity calculations due to large temperature and saturation gradients dynamically influencing viscosity and relative permeability distributions around the well. In this paper we propose a method which combines a semi-analytical solution of the hyperbolic Entov-Zazovsky problem for non-isothermal oil displacement with integration for pressure distribution taking into account nonlinear dependencies of fluid viscosities and relative permeabilities on temperature and saturations. Both constant injection rate and constant well pressure cases are considered. Example calculations demonstrate that the method helps to avoid underestimation of well injectivity in non-isothermal problems caused by grid-block averaging of fluid and reservoir properties in conventional inflow performance relations.


Sign in / Sign up

Export Citation Format

Share Document