Pseudoplasticity and Dynamic Interfacial Tension Relaxation Effects on Nucleate Pool Boiling in Aqueous Polymeric Liquids

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
R. M. Manglik ◽  
A. D. Athavale

Nucleate pool boiling heat transfer and its ebullient dynamics in polymeric solutions at atmospheric pressure saturated conditions are experimentally investigated. Three grades of hydroxyethyl cellulose (HEC) are used, which have intrinsic viscosity in the range 5.29 ≤ [η] ≤ 10.31 [dl/g]. Their aqueous solutions in different concentrations, with zero-shear viscosity in the range 0.0021 ≤ η0 ≤ 0.0118 [N⋅s/m2], exhibit shear-thinning rheology in varying degrees, as well as gas–liquid interfacial tension relaxation and wetting. Boiling heat transfer in solutions with constant molar concentrations of each additive, which are greater than their respective critical polymer concentration C*, is seen to have anomalous characteristics. There is degradation in the heat transfer at low heat fluxes, relative to that in the solvent, where the postnucleation bubble dynamics in the partial boiling regime is dominated by viscous resistance of the polymeric solutions. At higher heat fluxes, however, there is enhancement of boiling heat transfer due to a complex interplay of pseudoplasticity and dynamic surface tension effects. The higher frequency vapor bubbling train with high interfacial shear rates in this fully developed boiling regime tends to be influenced by increasing shear-thinning and time-dependent differential interfacial tension relaxation at the dynamic gas–liquid interfaces.

Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 577-586 ◽  
Author(s):  
M.M. Sarafraz ◽  
S.M. Peyghambarzadeh ◽  
Alavi Fazel

In this paper, nucleate pool boiling heat transfer coefficient of ternary mixtures of ethanol, monoethylene glycol (MEG) and diethylene glycol (DEG) as a new coolant with higher heat transfer coefficient has been investigated. Therefore, at varied concentrations of MEG and DEG and also at different heat fluxes, pool boiling heat transfer coefficients, have been experimentally measured. Results demonstrated the higher heat transfer coefficient in comparison with Water/MEG/DEG ternary mixture. In particular, at high heat fluxes, for ethanol/MEG/DEG mixture, higher boiling heat transfer coefficient is reported. Besides, experimental data were compared to well-known existing correlations. Results of this comparison express that the most accurate correlation for predicting the heat transfer coefficient of ethanol/MEG/DEG is modified Stephan - Preu?er which has been obtained in our earlier work.


Author(s):  
U. Verma ◽  
R. M. Manglik ◽  
M. A. Jog

Saturated, nucleate pool boiling on a horizontal, cylindrical heater in aqueous solutions of a fluorosurfactant (FS-50) is experimentally investigated. FS-50 is a long chain molecule of fluorinated carbon atoms, and it produces very low dynamic surface tension (varying from 72.5 mN/m to 17.4 mN/m with surface age and concentration) in aqueous solutions. Boiling curves (given by the variation of heat flux with wall superheat) and photographic records of the ebullient behavior are presented, along with a detailed characterization of the interfacial tension of the solutions. It is seen that nucleate pool boiling behavior of water is significantly altered by the addition of FS-50, and the heat transfer is increased. The enhancement in boiling is seen to stem from the substantial changes in the interfacial properties. A rather complex interplay of dynamic interfacial tension and surface wetting due to varying surfactant concentrations is seen to affect the phase change ebullient dynamics and associated heat transfer.


1998 ◽  
Vol 29 (1-3) ◽  
pp. 196-207
Author(s):  
Haruhiko Ohta ◽  
Koichi Inoue ◽  
Suguru Yoshida ◽  
Tomoji S. Morita

Sign in / Sign up

Export Citation Format

Share Document