Characteristics of the Flow Past a Wall-Mounted Finite-Length Square Cylinder at Low Reynolds Number With Varying Boundary Layer Thickness

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Sachidananda Behera ◽  
Arun K. Saha

Direct numerical simulation (DNS) is performed to investigate the modes of shedding of the wake of a wall-mounted finite-length square cylinder with an aspect ratio (AR) of 7 for six different boundary layer thicknesses (0.0–0.30) at a Reynolds number of 250. For all the cases of wall boundary layer considered in this study, two modes of shedding, namely, anti-symmetric and symmetric modes of shedding, were found to coexist in the cylinder wake with symmetric one occurring intermittently for smaller time duration. The phase-averaged flow field revealed that the symmetric modes of shedding occur only during instances when the near wake experiences the maximum strength of upwash/downwash flow. The boundary layer thickness seems to have a significant effect on the area of dominance of both downwash and upwash flow in instantaneous and time-averaged flow field. It is observed that the near-wake topology and the total drag force acting on the cylinder are significantly affected by the bottom-wall boundary layer thickness. The overall drag coefficient is found to decrease with thickening of the wall boundary layer thickness.

1986 ◽  
Vol 108 (1) ◽  
pp. 2-6 ◽  
Author(s):  
N. A. Cumpsty

There are few available measurements of the boundary layers in multistage compressors when the repeating-stage condition is reached. These tests were performed in a small four-stage compressor; the flow was essentially incompressible and the Reynolds number based on blade chord was about 5 • 104. Two series of tests were performed; in one series the full design number of blades were installed, in the other series half the blades were removed to reduce the solidity and double the staggered spacing. Initially it was wished to examine the hypothesis proposed by Smith [1] that staggered spacing is a particularly important scaling parameter for boundary layer thickness; the results of these tests and those of Hunter and Cumpsty [2] tend to suggest that it is tip clearance which is most potent in determining boundary-layer integral thicknesses. The integral thicknesses agree quite well with those published by Smith.


1970 ◽  
Vol 12 (1) ◽  
pp. 48-59 ◽  
Author(s):  
J. Dunham

Theories and experiments on secondary losses in axial turbine cascades without end clearance are reviewed. A formula is given which correlates the effect of blade loading on secondary losses more successfully than hitherto. However, it is also shown that secondary losses increase with upstream wall boundary layer thickness. Only a tentative expression for that effect can be suggested. In order to predict secondary losses reliably more must be known about these wall boundary layers.


1976 ◽  
Vol 98 (2) ◽  
pp. 245-250 ◽  
Author(s):  
R. S. Colladay ◽  
L. M. Russell

Film injection from discrete holes in a three row staggered array with 5-dia spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The ratio of the boundary layer thickness-to-hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Results from two different injection locations are presented to show the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally-buoyant helium filled “soap” bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their point of ejection.


2001 ◽  
Vol 30 (4) ◽  
pp. 458-466 ◽  
Author(s):  
O. Vigneau ◽  
S. Pignoux ◽  
J. L. Carreau ◽  
F. Roger

1986 ◽  
Vol 108 (1) ◽  
pp. 131-137 ◽  
Author(s):  
W. B. Roberts ◽  
G. K. Serovy ◽  
D. M. Sandercock

A model of the spanwise variation of the 3-D flow effects on deviation is proposed for middle-stage rotors and stators. This variation is taken as the difference above or below that predicted by blade element theory at any spanwise location. It was found that the stator variation is strongly affected by the end-wall boundary-layer thickness as well as camber, solidity, and blade channel aspect ratio. Rotor variation was found to depend on end-wall boundary layer thickness and tip clearance normalized by blade span. If these parameters are known or can be calculated, the models provide a reasonable approximation to the spanwise variation of deviation for middle compressor stages operating at low to high subsonic inlet Mach numbers.


1966 ◽  
Vol 17 (2) ◽  
pp. 161-176
Author(s):  
Stuart B. Savage

SummaryMost hypervelocity tunnels presently make use of conical or wedge type nozzles which produce source-type flow non-uniformities in the test section. The present paper considers the effects of such free-stream non-uniformities on the flow fields about slender axisymmetric cones. The inviscid flow is considered within the framework of the Newtonian expansion procedure of Cole and simple expressions are obtained for the flow field properties in the shock layer. This inviscid analysis predicts that a free-stream gradient of a magnitude typical of present hypervelocity test facilities can cause sizeable reductions in surface pressure and increased shock-layer thickness at the aft end of long slender conical models. The cone pressure, accounting for the viscous-inviscid interaction, is obtained by applying the inviscid analysis in tangent-cone fashion to the effective body (i.e. physical cone plus boundary-layer displacement thickness). Cheng’s simple equation is used to approximate the hypersonic boundary-layer development. Large increases in the boundary-layer thickness at the aft end of the model are predicted as a consequence of the source flow effects. The analyses agree well with experimental measurements of surface pressure and boundary-layer thickness made on a 5° half-angle cone tested in the Republic 24 inch Longshot I hypervelocity shock tunnel.


Sign in / Sign up

Export Citation Format

Share Document