Effect of Reynolds number and boundary layer thickness on the performance of V-cone flowmeter using CFD

2020 ◽  
Vol 73 ◽  
pp. 101728
Author(s):  
Nasiruddin Sheikh ◽  
S.N. Singh ◽  
S.V. Veeravalli ◽  
S. Hegde
1986 ◽  
Vol 108 (1) ◽  
pp. 2-6 ◽  
Author(s):  
N. A. Cumpsty

There are few available measurements of the boundary layers in multistage compressors when the repeating-stage condition is reached. These tests were performed in a small four-stage compressor; the flow was essentially incompressible and the Reynolds number based on blade chord was about 5 • 104. Two series of tests were performed; in one series the full design number of blades were installed, in the other series half the blades were removed to reduce the solidity and double the staggered spacing. Initially it was wished to examine the hypothesis proposed by Smith [1] that staggered spacing is a particularly important scaling parameter for boundary layer thickness; the results of these tests and those of Hunter and Cumpsty [2] tend to suggest that it is tip clearance which is most potent in determining boundary-layer integral thicknesses. The integral thicknesses agree quite well with those published by Smith.


1976 ◽  
Vol 98 (2) ◽  
pp. 245-250 ◽  
Author(s):  
R. S. Colladay ◽  
L. M. Russell

Film injection from discrete holes in a three row staggered array with 5-dia spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The ratio of the boundary layer thickness-to-hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Results from two different injection locations are presented to show the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally-buoyant helium filled “soap” bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their point of ejection.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012013
Author(s):  
G Yin ◽  
Y Zhang ◽  
M C Ong

Abstract Two-dimensional (2D) numerical simulations of flow over wall-mounted rectangular and trapezoidal ribs subjected to a turbulent boundary layer flow with the normalized boundary layer thickness of δ/D = 0.73,1.96,2.52 (D is the height of the ribs) have been carried out by using the Reynolds-averaged Navier-Stokes (RANS) equations combined with the k – ω SST (Shear Stress Transport) turbulence model. The angles of the two side slopes of trapezoidal rib varies from 0° to 60°. The Reynolds number based on the free-stream velocity U ∞ and D are 1 × 106 and 2 × 106. The results obtained from the present numerical simulations are in good agreement with the published experimental data. Furthermore, the effects of the angle of the two side slopes of the trapezoidal ribs, the Reynolds number and the boundary layer thickness on the hydrodynamic quantities are discussed.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Sachidananda Behera ◽  
Arun K. Saha

Direct numerical simulation (DNS) is performed to investigate the modes of shedding of the wake of a wall-mounted finite-length square cylinder with an aspect ratio (AR) of 7 for six different boundary layer thicknesses (0.0–0.30) at a Reynolds number of 250. For all the cases of wall boundary layer considered in this study, two modes of shedding, namely, anti-symmetric and symmetric modes of shedding, were found to coexist in the cylinder wake with symmetric one occurring intermittently for smaller time duration. The phase-averaged flow field revealed that the symmetric modes of shedding occur only during instances when the near wake experiences the maximum strength of upwash/downwash flow. The boundary layer thickness seems to have a significant effect on the area of dominance of both downwash and upwash flow in instantaneous and time-averaged flow field. It is observed that the near-wake topology and the total drag force acting on the cylinder are significantly affected by the bottom-wall boundary layer thickness. The overall drag coefficient is found to decrease with thickening of the wall boundary layer thickness.


1981 ◽  
Vol 103 (2) ◽  
pp. 250-257 ◽  
Author(s):  
A. Klein

The available experimental evidence of the effects of inlet conditions on the performance of conical diffusers with a free discharge is reviewed. The effects of inlet boundary layer thickness blockage, inlet shape parameter, turbulence, and Reynolds number are discussed. It is shown that many of the inconsistencies between different sources of data are the result of nonturbulent approach flows. Graphs are presented as guidelines for diffuser design.


Author(s):  
Runze Duan ◽  
Zhiying Chen ◽  
Liansheng Liu

A linear analysis method has been used to investigate the instability behavior of the viscoelastic liquid sheets moving in the surrounding ambient gas. The gas boundary layer thickness and the liquid sheet velocity profile were taken into account. The effects of gas and liquid viscosity on the growth rate were revealed. The governing equations were obtained through analysis of the liquid and gas domain and solved using the spectral method. The viscoelastic rheological parameters and some flow parameters have been tested to investigate their influences on the instability of the viscoelastic liquid sheets. The results reveal that the disturbances grow faster for the viscoelastic liquid sheet than Newtonian one with identical viscosity. Moreover, the increases of Weber number, elasticity number, gas Reynolds number, and momentum flux ratio can accelerate the breakup of the viscoelastic liquid sheet. However, the increases of time constant ratio, boundary layer thickness, and liquid Reynolds number have the opposite effects.


Author(s):  
Joshua B. Anderson ◽  
Ellen K. Wilkes ◽  
John W. McClintic ◽  
David G. Bogard

Film cooling effectiveness can be greatly affected by the characteristics of the upstream approach flow, although the degree of influence that different approach flow parameters exert is not completely clear. While some recent studies have investigated the effect of the approach Mach number, very little data exists that describes the separate effects of approach Mach and Reynolds number. Furthermore, the effect of boundary layer thickness on the effectiveness of shaped holes has not been thoroughly investigated. In this work, a parametric study of these effects was undertaken. This study considered approach flow velocities of Ma∞ = 0.03–0.15, with an independently varied Reynolds number of ReD = 5,500 – 15,500 by utilizing cooling hole diameters of D = 4.0 mm and 9.0 mm. The influence of boundary layer properties, including laminar and turbulent approach boundary layer characteristics, as well as varying boundary layer thickness, was also investigated. This work utilized plenum-fed shaped holes of an open-literature design. Hi-resolution IR thermography measured adiabatic effectiveness downstream of a single row of shaped cooling holes. The experiments were conducted at a density ratio of DR = 1.80 with an ambient temperature approach flow, using blowing ratios varying from M = 1.0 to 3.0. Special attention was paid to the implications of these results for scaling of effectiveness measurements from lower-speed approach flow conditions, as is present in a laboratory, toward higher speed conditions present within a gas turbine engine.


Author(s):  
Ferdinand-J. Cloos ◽  
Anna-L. Zimmermann ◽  
Peter F. Pelz

When a fluid enters a rotating circular pipe a swirl boundary layer with thickness of δ̃s appears at the wall and interacts with the axial momentum boundary layer with thickness of δ̃. We investigate a turbulent flow applying Laser-Doppler-Anemometry to measure the circumferential velocity profile at the inlet of the rotating pipe. The measured swirl boundary layer thickness follows a power law taking Reynolds number and flow number into account. A combination of high Reynolds number, high flow number and axial position causes a transition of the swirl boundary layer development in the turbulent regime. At this combination, the swirl boundary layer thickness as well as the turbulence intensity increase and the latter yields a self-similarity. The circumferential velocity profile changes to a new presented self-similarity as well. We define the transition inlet length, where the transition appears and a stability map for the two regimes is given for the case of a fully developed axial turbulent flow enters the rotating pipe.


2015 ◽  
Vol 10 (3) ◽  
pp. 5-18
Author(s):  
Ilya Zverkov ◽  
Alexey Kryukov ◽  
Genrich Grek ◽  
I. Konovalov ◽  
Georgiy Evtushok

This work is devoted to investigation of flow parameters on classic and wavy wing with Z-15-25 profile in area of Reynolds number from 0,35 to 2 ´ 105 with α = 0ᶛ. The oil-film visualization are demonstrate the transformation of separation area on low Reynolds wing surfaces. Influence of distribution of a pressure gradient on a profile upon the sizes of separation area is shown and limits of applicability of a wavy surface of a wing are defined. The thermoanemometric data provided to determine boundary layer thickness and pulsation characteristics. As shown that at Reynolds number area 0,6–2 ´ 105 the mechanisms of flow instability and laminar-turbulent transition are invariable and depend from local boundary layer parameters at preseparation area. As well as for a classical wing, in the area of a groove of a wavy wing, the central frequency of a package of waves of instability of a shift layer can be well foretold both by means of the linear theory of stability, and by means of a hypothesis that the wavelength of the running indignations is proportional to the doubled boundary layer thickness. At result the technique of a finding of parameters of a undulations of a wing for any profile in the range of numbers of Reynolds from 104 до 105 is offered.


Author(s):  
Jongwook Joo ◽  
Gorazd Medic ◽  
Om Sharma

Surface roughness can make boundary-layers separate in diffusing flow. Most roughness Reynolds Averaged Navier Stokes (RANS) models which change the boundary conditions to model the roughness effects cannot predict this phenomenon. In this study, Large-Eddy Simulation (LES) is performed to predict the roughness induced separation and investigate the flow physics to improve our understanding of the underlying phenomena. Flow over a roughened low-pressure turbine airfoil was simulated by LES with WALE subgrid-scale model [15]. The roughness is modeled as regularly placed roughness elements with a similar equivalent roughness height following Schlichting [1]. The roughness elements are gridded in a body-fitted and multi-block structured way. Over a range of Reynolds number, the LES correctly predicted the behavior — with the flow separation occurring only at the high Reynolds number. Analysis revealed that surface drag and boundary layer thickness increase as Reynolds number increases, which is opposite to the conventional smooth wall boundary-layer behavior. In the end, the thickened boundary layer undergoes separation in the diffusing section. RANS simulations are also conducted with a roughness model — over a smooth airfoil grid — and without a roughness model — by using the same rough airfoil grid. In all cases, no separation was observed. The boundary layer thickness predicted with RANS is thinner than those of LES, suggesting that models that only modify surface stress at the boundary do not properly capture the flow physics over the rough surface of an airfoil.


Sign in / Sign up

Export Citation Format

Share Document