Corrosion Experiments on Ceramic Samples Within Molten Salts

Author(s):  
Jan Hadrava ◽  
Vojtěch Galek ◽  
Jaroslav Stoklasa ◽  
Jan Hrbek ◽  
Kateřina Kunešová ◽  
...  

The molten salts can provide many possibilities for their use, e.g., an electrolyte in fuel cells or as a heat transfer medium and an oxygen transporter for flameless oxidation in molten salt oxidation (MSO) technology. The environment of molten salts is very corrosive; therefore, it is crucial to find such ceramic materials, which could be used as reactor filling for MSO technology. The aim of this work was to research physical properties of ceramic samples after the exposure within the eutectic mixture of Na2CO3, K2CO3, Li2CO3 and temperature of 700 °C.

2003 ◽  
Vol 125 (2) ◽  
pp. 170-176 ◽  
Author(s):  
D. Kearney ◽  
U. Herrmann ◽  
P. Nava ◽  
B. Kelly ◽  
R. Mahoney ◽  
...  

An evaluation was carried out to investigate the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost. The operating SEGS (Solar Electric Generating Systems located in Mojave Desert, California) plants currently use a high temperature synthetic oil consisting of a eutectic mixture of biphenyl/diphenyl oxide. The scope of this investigation included examination of known critical issues, postulating solutions or possible approaches where potential problems exist, and the quantification of performance and electricity cost using preliminary cost inputs. The two leading candidates were the so-called solar salt (a binary salt consisting of 60% NaNO3 and 40% KNO3) and a salt sold commercially as HitecXL (a ternary salt consisting of 48% CaNO32, 7% NaNO3, and 45% KNO3). Assuming a two-tank storage system and a maximum operation temperature of 450°C, the evaluation showed that the levelized electricity cost can be reduced by 14.2% compared to a state-of-the-art parabolic trough plant such as the SEGS plants. If higher temperatures are possible, the improvement may be as high as 17.6%. Thermocline salt storage systems offer even greater benefits.


2022 ◽  
Vol 334 ◽  
pp. 01004
Author(s):  
Alberto Giaconia ◽  
Giampaolo Caputo ◽  
Primo Di Ascenzi ◽  
Giulia Monteleone ◽  
Luca Turchetti

Solar reforming of biogas or biomethane represents an example hydrogen production from the combination of renewable sources such as biomass and solar energy. Thanks to its relatively low-cost and flexibility, solar-reforming can represent a complementary source of hydrogen where/when the demand exceeds the green hydrogen availability from water electrolysis powered by PV or wind. Molten salts can be used as heat transfer fluid and heat storage medium in solar-driven steam reforming. The main units of the process have been developed at the pilot scale and experimentally tested in a molten salt experimental loop at ENEA-Casaccia research center: a molten salt heater and a molten salt membrane reformer. After experimental validation, techno-economic studies have been carried out to assess the solar reforming technology on commercial scale and exploitation opportunities have been analysed.


Author(s):  
Francesco Di Lecce ◽  
Sandra Dulla ◽  
Piero Ravetto ◽  
Antonio Cammi ◽  
Stefano Lorenzi ◽  
...  

Heat transfer phenomena involving internally heated fluid flows are of particular interest in several industrial applications, in chemical plants as in the nuclear field. This topic is relevant for the development of the Molten Salt Reactors (MSRs) since it involves the safety characteristics of the liquid molten salt fuel. In the literature, there is a lack of systematic studies on the heat transfer mechanism and correlations for flows in ducts featuring an internal heat source, apart from some analytical studies performed in Fiorina et al., “Thermal-hydraulics of internally heated molten salts and application to the MSFR”, Journal of physics, Conference series 501 (2014). In this work, the Nusselt number is computed multiplying the traditional Nu for internal flows times a corrective factor to account for the internal heat source. As a main outcome of this work, it is possible to obtain a CFD-based improved estimate of the corrective factor correlation for turbulent flow regime with respect to the work by Fiorina. The numerical CFD analysis is performed with the open source code Open FOAM. Despite its simplicity, the method is general and applicable for any geometrical and thermal situations.


Solar Energy ◽  
2002 ◽  
Author(s):  
D. Kearney ◽  
U. Herrmann ◽  
P. Nava ◽  
B. Kelly ◽  
R. Mahoney ◽  
...  

An evaluation was carried out to investigate the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost. The operating SEGS plants currently use a high temperature synthetic oil consisting of a eutectic mixture of biphenyl/diphenyl oxide. The scope of this investigation included examination of known critical issues, postulating solutions or possible approaches where potential problems existed, and the quantification of performance and electricity cost using preliminary, but reasonable, cost inputs. The two leading candidates were the so-called solar salt (a binary salt consisting of 60% NaNO3 and 40% KNO3) and a salt sold commercially as HitecXL (a ternary salt consisting of 48% Ca(NO3)2, 7% NaNO3, and 45% KNO3).


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xiankun Xu ◽  
Xiaoxin Wang ◽  
Peiwen Li ◽  
Yuanyuan Li ◽  
Qing Hao ◽  
...  

The eutectic mixture of MgCl2–KCl molten salt is a high temperature heat transfer and thermal storage fluid able to be used at temperatures up to 800 °C in concentrating solar thermal power systems. The molten salt thermophysical properties are reported including vapor pressure, heat capacity, density, viscosity, thermal conductivity, and the corrosion behavior of nickel-based alloys in the molten salt corrosion at high temperatures. Correlations of the measured properties as functions of molten salt temperatures are presented for industrial applications. The test results of tensile strength of two nickel-based alloys exposed in the molten salt at a temperature of 800 °C from 1-week length to 16-week length are reported. It was found that the corrosion and strength loss is rather low when the salt is first processed to remove water and oxygen.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2340 ◽  
Author(s):  
Cristina Prieto ◽  
Alfonso Rodríguez-Sánchez ◽  
F. Ruiz-Cabañas ◽  
Luisa Cabeza

Parabolic trough collector (PTC) technology is currently the most mature solar technology, which has led to the accumulation of relevant operational experience. The overall performance and efficiency of these plants depends on several components, and the heat transfer fluid (HTF) is one of the most important ones. Using molten salts as HTFs has the advantage of being able to work at higher temperatures, but it also has the disadvantage of the potential freezing of the HTF in pipes and components. This paper models and evaluates two methods of freeze recovery, which is needed for this HTF system design: Heat tracing in pipes and components, and impedance melting in the solar field. The model is used to compare the parasitic consumption in three molten salts mixtures, namely Solar Salt, HiTec, and HiTec XL, and the feasibility of this system in a freezing event. After the investigation of each of these subsystems, it was concluded that freeze recovery for a molten salt plant is possible.


2002 ◽  
Vol 57 (11) ◽  
pp. 839-846 ◽  
Author(s):  
Thomas E. Sutto ◽  
Hugh C. De Long ◽  
Paul C. Trulove

The physical properties of solid gel electrolytes of either polyvinylidene diflurohexafluoropropylene or a combination of polyvinylidene hexafluoropropylene and polyacrylic acid, and the molten salts 1-ethyl-3-methylimidazolium tetrafluoroborate, 1,2-dimethyl-3-n-propylimidazolium tetrafluoroborate, and the new molten salts 1,2-dimethyl-3-n-butylimidazolium tetrafluoroborate, and 1,2-dimethyl-3-n-butylimidazolium hexafluorophosphate were characterized by temperature dependent ionic conductivity measurements for both the pure molten salt and of the molten salt with 0.5 M Li+ present. Ionic conductivity data indicate that for each of the molten salts, the highest concentration of molten salt allowable in a single component polymer gel was 85%, while gels composed of 90%molten salt were possible when using both polyvinylidene hexafluorophosphate and polyacrylic acid. For polymer gel composites prepared using lithium containing ionic liquids, the optimum polymer gel composite consisted of 85% of the 0.5 M Li+/ionic liquid, 12.75% polyvinylidene hexafluoropropylene, and 2.25% poly (1-carboxyethylene). The highest ionic conductivity observed was for the gel containing 90%1-ethyl-3-methyl-imidazolium tetrafluoroborate, 9.08 mS/cm. For the lithium containing ionic liquid gels, their ionic conductivity ranged from 1.45 to 0.05 mS/cm, which is comparable to the value of 0.91 mS/cm, observed for polymer composite gels containing 0.5 M LiBF4 in propylene carbonate.


Author(s):  
Hani Tiznobaik ◽  
Donghyun Shin

Abstract Increased in thermo-physical properties of molten salt nanofluids have been reported. These findings makes molten salts nanofluids one of the most promising thermal energy storage media. One of the main application of these types of materials are in concentrated solar power plants. In this study, an investigation is performed on nanofluids specific heat capacity mechanisms in order to provide a reasonable description of the specific heat capacity enhancement of nanofluids. Then, a comprehensive experiments are performed on the effects of nanoparticles concentration on the specific heat capacity and materials characterization of molten salt nanofluids. This study is performed to analyze the optimum amount of nanoparticle and find the way to maximize the effects of nanoparticle on thermophysical properties of molten slat. Different molten salts nanofluids with varying nanoparticles concentration were synthesized. The specific heat capacities of mixtures were measured by a modulated scanning calorimeter. Moreover, the material characterization analyses were performed using scanning electron microscopy to investigate the micro-structural characterization of different nanofluids.


Sign in / Sign up

Export Citation Format

Share Document