Exact Algebraic Solution of an Optimal Double-Mass Dynamic Vibration Absorber Attached to a Damped Primary System

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Toshihiko Asami

Abstract This article presents exact algebraic solutions to optimization problems of a double-mass dynamic vibration absorber (DVA) attached to a viscous damped primary system. The series-type double-mass DVA was optimized using three optimization criteria (the H∞ optimization, H2 optimization, and stability maximization criteria), and exact algebraic solutions were successfully obtained for all of them. It is extremely difficult to optimize DVAs when there is damping in the primary system. Even in the optimization of the simpler single-mass DVA, exact solutions have been obtained only for the H2 optimization and stability maximization criteria. For H∞ optimization, only numerical solutions and an approximate perturbation solution have been obtained. Regarding double-mass DVAs, an exact algebraic solution could not be obtained in this study in the case where a parallel-type DVA is attached to the damped primary system. For the series-type double-mass DVA, which was the focus of the present study, an exact algebraic solution was obtained for the force excitation system, in which the disturbance force acts directly on the primary mass; however, an algebraic solution was not obtained for the motion excitation system, in which the foundation of the system is subjected to a periodic displacement. Because all actual vibration systems involve damping, the results obtained in this study are expected to be useful in the design of actual DVAs. Furthermore, it is a great surprise that an exact algebraic solution exists even for such complex optimization problems of a linear vibration system.

2002 ◽  
Vol 124 (2) ◽  
pp. 284-295 ◽  
Author(s):  
Toshihiko Asami ◽  
Osamu Nishihara ◽  
Amr M. Baz

H ∞ and H2 optimization problems of the Voigt type dynamic vibration absorber (DVA) are classical optimization problems, which have been already solved for a special case when the primary system has no damping. However, for the general case including a damped primary system, no one has solved these problems by algebraic approaches. Only the numerical solutions have been proposed until now. This paper presents the analytical solutions for the H∞ and H2 optimization of the DVA attached to the damped primary systems. In the H∞ optimization the DVA is designed such that the maximum amplitude magnification factor of the primary system is minimized; whereas in the H2 optimization the DVA is designed such that the squared area under the response curve of the primary system is minimized. We found a series solution for the H∞ optimization and a closed-form algebraic solution for the H2 optimization. The series solution is then compared with the numerical solution in order to check the accuracy in connection with the truncation error of the series. The exact solution presented in this paper is too complicated to handle by a hand-held calculator, so we proposed an approximate solution for the practical object.


2002 ◽  
Vol 124 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Toshihiko Asami ◽  
Osamu Nishihara

The dynamic vibration absorber (DVA) is a passive vibration control device which is attached to a vibrating body (called a primary system) subjected to exciting force or motion. In this paper, we will discuss an optimization problem of the three-element type DVA on the basis of the H2 optimization criterion. The objective of the H2 optimization is to reduce the total vibration energy of the system for overall frequencies; the total area under the power spectrum response curve is minimized in this criterion. If the system is subjected to random excitation instead of sinusoidal excitation, then the H2 optimization is probably more desirable than the popular H∞ optimization. In the past decade there has been increasing interest in the three-element type DVA. However, most previous studies on this type of DVA were based on the H∞ optimization design, and no one has been able to find the algebraic solution as of yet. We found a closed-form exact solution for a special case where the primary system has no damping. Furthermore, the general case solution including the damped primary system is presented in the form of a numerical solution. The optimum parameters obtained here are compared to those of the conventional Voigt type DVA. They are also compared to other optimum parameters based on the H∞ criterion.


2018 ◽  
Vol 217 ◽  
pp. 01006
Author(s):  
Muhammad Iyad Al-Maliki Saifudin ◽  
Nabil Mohamad Usamah ◽  
Zaidi Mohd Ripin

Motorcycle riders are exposed to hand-transmitted vibration of the hand-arm system due to the vibration of the handle and extended exposure can result in numbness and trembling. One feasible solution to attenuate the handle vibration is by using a dynamic vibration absorber (DVA). In this work a DVA is designed and mounted on the motorcycle handle in order to reduce the vibration at the handle by transferring the vibration from the primary system handle to the secondary mass. Removal of elastomeric material at the DVA mounting locations, symmetry of secondary mass and the direction of DVA attachment influence the vibration absorption. A series of tests conducted show that the vibration on the handle is mainly induced by the engine and there is additional source of vibration from the road surface roughness. Installation of DVA at different locations on the handle resulted in various attenuation levels at different speed in the x and z directions. the attenuation level is between 59-68 % in the biodynamic x-directions for speed at 30-50 kmh-1.


2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Nguyen Van Khang

The dynamic vibration absorber (DVA) has been widely applied in various technical fields. This paper presents a  procedure for designing the optimal parameters of  a dynamic vibration absorber attached to a damped primary system. The values of the optimal parameters of the DVA obtained by the Taguchi’s method are compared by the results obtained by other methods. The comparison results show the advantages of the procedure presented in this study


Sign in / Sign up

Export Citation Format

Share Document