Analysis of Large-Amplitude Oscillations in Triple-Well Non-Natural Systems

Author(s):  
S. K. Lai ◽  
X. Yang ◽  
F. B. Gao

In this paper, the large-amplitude oscillation of a triple-well non-natural system, covering both qualitative and quantitative analysis, is investigated. The nonlinear system is governed by a quadratic velocity term and an odd-parity restoring force having cubic and quintic nonlinearities. Many mathematical models in mechanical and structural engineering applications can give rise to this nonlinear problem. In terms of qualitative analysis, the equilibrium points and its trajectories due to the change of the governing parameters are studied. It is interesting that there exist heteroclinic and homoclinic orbits under different equilibrium states. By adjusting the parameter values, the dynamic behavior of this conservative system is shifted accordingly. As exact solutions for this problem expressed in terms of an integral form must be solved numerically, an analytical approximation method can be used to construct accurate solutions to the oscillation around the stable equilibrium points of this system. This method is based on the harmonic balance method incorporated with Newton's method, in which a series of linear algebraic equations can be derived to replace coupled and complicated nonlinear algebraic equations. According to this harmonic balance-based approach, only the use of Fourier series expansions of known functions is required. Accurate analytical approximate solutions can be derived using lower order harmonic balance procedures. The proposed analytical method can offer good agreement with the corresponding numerical results for the whole range of oscillation amplitudes.

T-Comm ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 21-32
Author(s):  
Svetlana F. Gorgadze ◽  
◽  
Anton A. Maximov ◽  

The analysis and generalization of the main publications on the methods of synthesis and analysis of non-linear active microwave circuits based on the use of the harmonic balance method are presented. As a result of some classification of mathematical approaches and techniques used in the context of this method, a selection and review of basic algorithms was made, the sequential application of which makes it possible to obtain the final result for a scheme of any complexity. The principles of drawing up the initial system of differential equations for electronic circuits and reducing it to a system of linear algebraic equations are considered. A detailed and, at the same time, simplified interpretation of the approaches involving the use of projection methods and Krylov subspaces is given in order to make them easier to understand. Both the complete and the restart generalized method of minimal residuals are considered, in which the desired solution is obtained in the course of an iterative process, at each stage of which subspaces of lower dimension are constructed. The possibilities of simulators and application packages intended for circuit design of electronic circuits are considered. The problem of matching a power amplifier in large signal mode using the APLAC simulator, which is NI AWR technology for designing high-frequency circuits, is discussed.


Author(s):  
M W Ullah ◽  
M S Rahman ◽  
M A Uddin

In this paper, a modified harmonic balance method is presented to solve nonlinear forced vibration problems. A set of nonlinear algebraic equations appears among the unknown coefficients of harmonic terms and the frequency of the forcing term. Usually a numerical method is used to solve them. In this article, a set of linear algebraic equations is solved together with a nonlinear one. The solution obtained by the proposed method has been compared to those obtained by variational and numerical methods. The results show good agreement with the results obtained by both methods mentioned above.


Author(s):  
B. Panigrahi ◽  
G. Pohit

AbstractAn interesting phenomenon is observed while conducting numerical simulation of non-linear dynamic response of FGM (functionally graded material) beam having large amplitude motion under harmonic excitation. Instead of providing a frequency sweep (forward or backward), if amplitude is incremented and response frequency is searched for a particular amplitude of vibration, solution domain can be enhanced and stable as well as unstable solution can be obtained. In the present work, first non-linear differential equations of motion for large amplitude vibration of a beam, which are obtained using Timoshenko beam theory, are converted into a set of non-linear algebraic equations using harmonic balance method. Subsequently an amplitude incremental iterative technique is imposed in order to obtain steady-state solution in frequency amplitude plane. It is observed that the method not only shows very good agreement with the available research but the domain of applicability of the method is enhanced up to a considerable extent as the stable and unstable solution can be captured. Subsequently forced vibration response of FGM beams are analysed.


2016 ◽  
Vol 16 (02) ◽  
pp. 1450100 ◽  
Author(s):  
Y. Y. Lee

This paper investigates the transmission loss of a nonlinearly vibrating perforated panel using the multi-level residue harmonic balance method. The coupled governing differential equations which represent the air mass movement at each hole and the nonlinear panel vibration are developed. The proposed analytical solution method, which is revised from a previous harmonic balance method for single mode problems, is newly applied for solving the coupled differential equations. The main advantage of this solution method is that only one set of nonlinear algebraic equations is generated in the zero level solution procedure while the higher level solutions to any desired accuracy can be obtained by solving a set of linear algebraic equations. The results obtained from the multi-level residue harmonic balance method agree reasonably with those obtained from a numerical integration method. In the parametric study, the velocity amplitude convergences have been checked. The effects of excitation level, perforation ratio, diameter of hole, and panel thickness are examined.


2017 ◽  
Vol 72 (7) ◽  
pp. 673-676
Author(s):  
Baisheng Wu ◽  
Weijia Liu ◽  
C.W. Lim

AbstractA second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.


2021 ◽  
Vol 3 (56) ◽  
pp. 90-96
Author(s):  
Dmitry A. STEPANENKO ◽  
◽  
Ksenija A. BUNCHUK ◽  

The article describes technique for modelling of ultrasonic vibrations amplifiers, which are implemented in the form of non-uniform ring-shaped waveguides, based on application of harmonic balance method. Bending vibrations of the waveguide are described by means of non-uniform integral and differential equations equivalent to Euler–Bernoulli equations in order to simplify calculation of amplitude-frequency characteristics of vibrations, particularly, to exclude the need of working with singular matrices. Using harmonic balance method, equations of vibrations are reduced to overdetermined non-uniform linear system of algebraic equations, which least-squares solution is determined by means of pseudo-inverse matrix. On the basis of analysis of numerical example possibility of existence of variable-sign and constant-sign vibration modes of the waveguide is shown and it is determined that for realization of amplifying function it is necessary to use waveguide at constant-sign vibration mode. The constant-sign vibration modes are combinations of bending defor-mation and extensional deformation of central line of the waveguide and they are detected due to accounting extensibility of the central line in equations of vibrations. Validity of the obtained results is confirmed by comparing them to the results of modelling by means of finite element method.


Author(s):  
Weilin Zhu ◽  
Shijing Wu ◽  
Xiaosun Wang

In this paper, a new nonlinear time-varying dynamic model for compound planetary gear sets, which incorporates the time-varying meshing stiffness, transmission errors and gear backlash, has been presented. The harmonic balance method (HBM), which is an analytical approach widely used for nonlinear oscillators, is employed to investigate the dynamic characteristics of the gear sets. The matrix form iteration algebraic equations has been established and solved by HBM and single rank inverse Broyden method to reveal the effect of transmission error and gear backlash on the frequency response characteristic of the system. Sub-harmonic resonant, super-harmonic resonant and jump phenomenon have been illustrated by several examples.


Author(s):  
Stefano Zucca ◽  
Juan Borrajo ◽  
Muzio M. Gola

In this paper a methodology for forced response calculation of bladed disks with underplatform dampers is described. The FE disk model, supposed to be cyclically symmetric, is reduced by means of Component Mode Synthesis and then DOFs lying at interfaces are further reduced by means of interface modes. Underplatform dampers are modeled as rigid bodies translating both in the radial and in the tangential direction of the engine. Contacts between blade platforms and damper are simulated by means of contact elements characterized by both tangential and normal contact stiffness, allowing partial separation of contact surfaces. Differential equilibrium equations are turned in non-linear algebraic equations by means of the Harmonic Balance Method (HBM). The methodology is implemented in a numerical code for forced response calculation of frictionally damped bladed disks. Numerical calculations are performed to evaluate the effectiveness of both the reduced order model and the underplatform model in simulating the dynamic behavior of bladed disks in presence of underplatform dampers.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
M.-H. Trinh ◽  
S. Berger ◽  
E. Aubry

The study of the nonlinear dynamic behaviour of friction systems in general and of clutch systems in particular remains an open problem. Noise and vibrations induced by friction in the sliding phase of a clutch are very sensitive to design parameters. The latter have significant dispersions. In the study of the system stability, the problem is not only to know if the parameter values lead to the appearance of unstable equilibrium points; the real challenge lies in estimating the vibration levels when such unstable equilibrium points occur. This estimation is analyzed using the limit cycles. This article aims to study the ability of robust approaches based on developments in nonintrusive generalized polynomial chaos and a constrained harmonic balance method to estimate the vibration levels through the limit cycles of a clutch system in the presence of uncertainty. The purpose is to provide a low-cost, high precision approach, compared to the classic Monte Carlo method.


Sign in / Sign up

Export Citation Format

Share Document