scholarly journals Enhanced Delayed Detached Eddy Simulation for Cavities and Labyrinth Seals

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Richard J. Jefferson-Loveday

Abstract A range of popular hybrid Reynolds-averaged Navier–Stokes -large eddy simulation (RANS-LES) methods are tested for a cavity and two labyrinth seal geometries using an in-house high-order computational fluid dynamics (CFD) code and a commercial CFD code. The models include the standard Spalart–Allmaras (SA) and Menter shear stress transport (SST) versions of delayed detached eddy simulation (DDES) and the Menter scale adaptive simulation (SAS) model. A recently formulated, enhanced, variant of SA-DDES presented in the literature and a new variant using the Menter SST model are also investigated. The latter modify the original definition of the subgrid length scale used in standard DDES based on local vorticity and strain. For all geometries, the meshes are considered to be hybrid RANS-LES adequate. Very low levels of resolved turbulence and quasi-two-dimensional flow fields are observed for the standard DDES and SAS models even for the test cases here that contain obstacles, sharp edges, and swirling flow. Similar findings are observed for both the commercial and in-house high-order CFD codes. For the cavity simulations, when using standard DDES and SAS, there is a significant under prediction of turbulent statistics compared with experimental measurements. The enhanced versions of DDES, on the other hand, show a significant improvement and resolve turbulent content over a wide range of scales. Improved agreement with experimental measurements is also observed for profiles of the vertical velocity component. For the first labyrinth seal geometry swirl velocities are more accurately captured by the enhanced DDES versions. For the second labyrinth seal geometry, the mass flow coefficient prediction using the enhanced models is significantly improved (up to 30%). Standard, industrially available hybrid RANS-LES models, when applied to the present canonical cases can produce little to no resolved turbulent content. The standard SA- and Menter-based DDES models can yield lower levels of eddy viscosity when compared to equivilent steady RANS simulations which means that they are not operating as RANS or LES. It is recommended that hybrid RANS-LES models should be extensively tested for specific flow configurations and that special care is exercised by CFD practitioners when using many of the popular hybrid RANS-LES models that are currently available in commercial CFD packages.

Author(s):  
Richard J. Jefferson-Loveday

A range of popular hybrid Reynolds averaged Navier-Stokes - large eddy simulation (RANS-LES) methods are tested for cavity and labyrinth seal flows using an in-house high-order computational fluid dynamics (CFD) code and a commercial CFD code. The models include the Spalart-Allmaras (SA) and Menter SST variants of delayed detached eddy simulation (DDES), the Menter scale adaptive simulation (SAS) model, and a new enhanced variant of SA-DDES recently presented in the literature. The latter modifies the original definition of the subgrid length-scale used in DDES based on local vorticity and strain. For both geometries, the meshes are hybrid RANS-LES adequate. Very low levels of resolved turbulent content are observed for both the cavity and labyrinth seal flows for all models apart from the enhanced version of DDES. Similar findings are observed for both the commercial and in-house CFD codes. For both cases most models essentially produce a quasi-two-dimensional flow field with minimal resolved content. For the cavity simulations there is a significant under prediction of turbulent statistics. The enhanced version of SA-DDES shows a significant improvement and resolves turbulent content over a wide range of scales. Improved agreement with experimental measurements is also observed. It is recommended that extreme care should be taken where hybrid RANS-LES simulations are essentially steady but have lower than RANS levels of eddy viscosity.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040075
Author(s):  
Yu-Chen Yang ◽  
Zhen-Ming Wang ◽  
Ning Zhao

Flow past a prolate spheroid, which is a representative simplified configuration for vehicles such as maneuvering ships, submarines and missiles, comprises a series of complex flow phenomena including pressure-induced flow separation, which results in unsteady forces and movements that may be detrimental to vehicles’ performance. In this paper, a Delayed Detached Eddy Simulation (DDES) method combined with a new high-order U-MUSCL scheme is proposed to more precisely and accurately capture the flow separation and vortex structure. This method is applied to simulate the aerodynamic performance of the 6:1 prolate spheroid at an AOA of [Formula: see text] with the Reynolds number of [Formula: see text]. Axial pressure distribution of five individual chord wise sections and flow field structure of the aft body are analyzed. Numerical results agree well with the experimental data. It can be concluded that DDES combined with three-order U-MUSCL scheme demonstrates reliable performance since it captures the vortex structure of aft body distinctly and predicts the separation and reattachment points of the secondary vortex precisely.


2017 ◽  
Vol 71 ◽  
pp. 199-216 ◽  
Author(s):  
Jia-ye Gan ◽  
Hong-Sik Im ◽  
Xiang-ying Chen ◽  
Ge-Cheng Zha ◽  
Crystal L. Pasiliao

Author(s):  
Richard J. Jefferson-Loveday ◽  
V. Nagabhushana Rao ◽  
James C. Tyacke ◽  
Paul G. Tucker

Sign in / Sign up

Export Citation Format

Share Document