Comprehensive Studies on the Effect of Reducing Agents on Electrocatalytic Activity and Durability of Platinum Supported on Carbon Support for Oxygen Reduction Reaction

Author(s):  
Sabarinathan Ravichandran ◽  
Narayanamoorthy Bhuvanendran ◽  
Weiqi Zhang ◽  
Qian Xu ◽  
Lindiwe Khotseng ◽  
...  

Abstract Platinum supported on carbon support (Pt/C) is currently the most common and practicable electrocatalyst for the real application of polymer electrolyte membrane fuel cells (PEMFCs). In this work, it was found that the nature of a reducing agent has noteworthy influence on Pt nanoparticles growth and distribution over acid-treated-Vulcan carbon support (Pt/AT-VC), which was employed to catalyze the oxygen reduction reaction (ORR) for PEMFC. Three distinct reducing agents, i.e., sodium borohydride (BH), sodium citrate (CA), and formaldehyde (FMY), were employed for Pt/AT-VC preparation through the impregnation-reduction approach. The impacts of the reducing agent on Pt nanoparticles size and its distribution over carbon support were scrutinized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) techniques. The electrocatalytic performance for ORR was subsequently studied by a three-electrode setup with rotating ring-disc electrode (RRDE) characterization and practical fuel cell operation. The ORR kinetics and mechanism were confirmed from RRDE, and it was well correlated with the durability test and single-cell results. Based on the results, the catalysts’ performances for practical PEMFC can be arranged in the order of Pt/AT-VC (BH) < Pt/AT-VC (CA) < Pt/AT-VC (FMY), implying the significance of selecting the reducing agent for the preparation of Pt/C for PEMFC real application.

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 862
Author(s):  
Rui Yao ◽  
Jun Gu ◽  
Haitong He ◽  
Tao Yu

A facile strategy is proposed to synthesize boron-doped ECP600 carbon black (B-ECP600), and the catalyst of Pt supported on boron-doped ECP600 (Pt/B-ECP600) shows smaller particle sizes and a higher electrochemical surface area (95.62 m2·gPt−1) and oxygen reduction reaction activity (0.286 A·mgPt−1 for mass activity; 0.299 mA·cm−2 for area specific activity) compared to the catalyst of Pt supported on ECP600 (Pt/ECP600). The results show that the boron doping of the carbon supports plays an important role in controlling the size and dispersion of Pt nanoparticles and the O2 adsorption/dissociation of the oxygen reduction reaction. A further accelerated durability test proves that boron doping can greatly enhance the stability of carbon support and thus improves the electrochemical performance of the catalyst during the long-time running. All these results suggest boron-doped carbon has great potential for application in fuel cells.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Won-Suk Jung

Since the reaction rate and cost for cathodic catalyst in polymer electrolyte membrane fuel cells are obstacles for commercialization, the high-performance catalyst for oxygen reduction reaction is necessary. The Ni encapsulated with N-doped graphitic carbon (Ni@NGC) prepared with ethylenediamine and carbon black is employed as an efficient support for the oxygen reduction reaction. Characterizations show that the Ni@NGC has a large surface area and mesoporous structure that is suitable to the support for the Pt catalyst. The catalyst structure is identified and the size of Pt nanoparticles distributed in the narrow range of 2–3 nm. Four different nitrogen species are doped properly into graphitic carbon structure. The Pt/Ni@NGC shows higher performance than the commercial Pt/C catalyst in an acidic electrolyte. The mass activity of the Pt/Ni@NGC in fuel cell tests exhibits over 1.5 times higher than that of commercial Pt/C catalyst. The Pt/Ni@NGC catalyst at low Pt loading exhibits 47% higher maximum power density than the Pt/C catalyst under H2-air atmosphere. These results indicate that the Ni@NGC as a support is significantly beneficial to improving activity.


2009 ◽  
Vol 9 (9) ◽  
pp. 5188-5197 ◽  
Author(s):  
Pilli Satyananda Kishore ◽  
Balasubramanian Viswanathan ◽  
Thirukkallam Kanthadai Varadarajan

2021 ◽  
Author(s):  
Kaneyuki Taniguchi ◽  
Jhon Lehman Cuya Huaman ◽  
Dausuke Iwata ◽  
Shun Yokoyama ◽  
Takatoshi Matsumoto ◽  
...  

Alloying Pt with transition elements as electrodes in fuel cells has been proposed to solve the CO poisoning effect besides cost-benefit. Consequently, the use of Ni-Pt nanoparticles (NPs) has been...


2021 ◽  
Author(s):  
Hong Zhu ◽  
Qingjun Chen ◽  
Jinghua Yu ◽  
Qian Zhou ◽  
Fanghui Wang ◽  
...  

The corrosion of carbon support is one of key factors causing deactivation of Pt-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells. In this work, a highly...


2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.


Author(s):  
D. Rosas-Medellín ◽  
K. Y. Pérez-Salcedo ◽  
D. Morales-Acosta ◽  
F. J. Rodríguez-Varela ◽  
B. Escobar

Sign in / Sign up

Export Citation Format

Share Document