cobalt porphyrins
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 27)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 8 (9) ◽  
pp. 1653-1657
Author(s):  
Peter T. Smith ◽  
Bahiru Punja Benke ◽  
Lun An ◽  
Younghoon Kim ◽  
Kimoon Kim ◽  
...  

2021 ◽  
pp. 109468
Author(s):  
Aijian Wang ◽  
Xiaoliang Shen ◽  
Jinshen Ren ◽  
Qi Wang ◽  
Wei Zhao ◽  
...  

Author(s):  
Qingxin Zhang ◽  
Yabo Wang ◽  
Yanzhi Wang ◽  
Shujiao Yang ◽  
Xuan Wu ◽  
...  

Author(s):  
Dili R. Subedi ◽  
Youngwoo Jang ◽  
Ashwin Ganesan ◽  
Sydney Schoellhorn ◽  
Ryan Reid ◽  
...  

Two types of cobalt porphyrins, viz., meso-tetrakis(tolylporphyrinato)cobalt(II), (TTP)Co (1), and meso-tetrakis(triphenylamino porphyrinato)cobalt(II), [(TPA)4P]Co, (2) were self-assembled via metal-ligand axial coordination of phenyl imidazole functionalized fulleropyrrolidine, ImC[Formula: see text] to form a new series of donor–acceptor constructs. A 1:2 complex formation with ImC[Formula: see text] was established in the case of (TTP)Co while for [(TPA)4P]Co only a 1:1 complex was possible to positively identify. The binding constants [Formula: see text] and [Formula: see text] for step-wise addition of ImC[Formula: see text] to (TTP)Co were found to be 1.07 × 105 and 3.20 × 104 M[Formula: see text], respectively. For [(TPA)4P]Co:ImC[Formula: see text], the measured [Formula: see text] values was found to be 6.48 × 104 M[Formula: see text], slightly smaller than that observed for (TTP)Co. Although both cobalt porphyrins were non-fluorescent, they were able to quench the fluorescence of ImC[Formula: see text] indicating occurrence of excited state events in the supramolecular donor-acceptor complexes. Electrochemistry coupled with spectroelectrochemistry, revealed the formation of cobalt(III) porphyrin cation instead of a cobalt(II) porphyrin radical cation, as the main product, during oxidation of phenyl imidazole coordinated cobalt porphyrin. With the help of computational and electrochemical results, an energy level diagram was constructed to witness excited state photo-events. Competitive energy and electron transfer from excited CoP to coordinated ImC[Formula: see text], and electron transfer from Im1C[Formula: see text]* to cobalt(II) porphyrin resulting into the formation of PCo[Formula: see text]:ImC[Formula: see text] charge separated state was possible to envision from the energy diagram. Finally, using femtosecond transient absorption spectroscopy and data analysis by Glotaran, it was possible to establish sequential occurrence of energy transfer and charge separation processes. The lifetime of the final charge separated state was [Formula: see text] 2 ns. A slightly better charge stabilization was observed in the case of [(TPA)4P]Co:ImC[Formula: see text] due to the presence of electron rich, peripheral triphenylamine substituents on the cobalt porphyrin.


2021 ◽  
Author(s):  
Peter T. Smith ◽  
Bahiru Punja Benke ◽  
Lun An ◽  
Younghoon Kim ◽  
Kimoon Kim ◽  
...  

We report a supramolecular porous organic cage platform composed of cobalt porphyrins for catalyzing the electrochemical hydrogen evolution reaction (HER) from water at neutral pH. Owing to its permanent porosity, the supramolecular structure yields a catalyst film with a 5-fold increase in the number of electrochemically active cobalt atoms and an improvement in Tafel slope from 170 mV/decade to 119 mV/decade compared to a planar cobalt porphyrin analog, reaching activities over 19,000 turnovers for HER over a 24-hour period with 100% Faradaic efficiency.


2021 ◽  
Author(s):  
Peter T. Smith ◽  
Bahiru Punja Benke ◽  
Lun An ◽  
Younghoon Kim ◽  
Kimoon Kim ◽  
...  

We report a supramolecular porous organic cage platform composed of cobalt porphyrins for catalyzing the electrochemical hydrogen evolution reaction (HER) from water at neutral pH. Owing to its permanent porosity, the supramolecular structure yields a catalyst film with a 5-fold increase in the number of electrochemically active cobalt atoms and an improvement in Tafel slope from 170 mV/decade to 119 mV/decade compared to a planar cobalt porphyrin analog, reaching activities over 19,000 turnovers for HER over a 24-hour period with 100% Faradaic efficiency.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 657
Author(s):  
Jhon Puerres ◽  
Mauro Díaz ◽  
John Hurtado ◽  
Pablo Ortiz ◽  
María T. Cortés

Cobalt porphyrins have emerged as promising catalysts for electrochemical and photoelectrochemical applications because of their good performance, low cost and the abundance of cobalt in the earth. Herein, a negatively charged porphyrin meso-tetra-(4-sulfonatophenyl)-porphin (TPPS) was immobilized in polypyrrole (PPy) during the electro-polymerization, and then it was metallized with cobalt to obtain meso-tetra-(4-sulfonatophenyl)-porphyrinato cobalt (II) (CoTPPS) as a dopant in PPy. The coatings were evaluated as photoelectrodes towards thiosulfate oxidation and oxygen reduction. For comparison purposes, the photoelectrochemical behavior of ClO4−-doped polypyrrole films was also evaluated. Characterizations by chronoamperometry, UV-Vis spectroscopy and Raman spectroscopy showed that polypyrrole is stable under anodic and cathodic conditions, but CoTPPS and TPPS immobilized in PPy are degraded during the anodic process. Thus, decreases in photocurrent of up to 87% and 97% for CoTPPS-doped PPy and TPPS-doped PPy were observed after a 30-min chronoamperometry test. On the other hand, good stability of CoTPPS and TPPS immobilized in PPy was observed during photoelectrochemical oxygen reduction, which was reflected in almost constant photocurrents obtained by chronoamperometry. These findings are relevant to understanding the role of CoTPPS as a catalyst or pre-catalyst in photoelectrochemical applications such as water splitting. In addition, these results could pave the way for further research to include CoTPPS-doped PPy in the design of novel photocathodes.


Sign in / Sign up

Export Citation Format

Share Document