Combined Enhancement Techniques on Double Tube Heat Exchanger Using Nanofluid and Helicoid Tube Shape

Author(s):  
Yousef Alhendal ◽  
Abdalla Gomaa ◽  
Mahmoud Abdelmagied

Abstract The thermofluid characteristics of Al2O3–water nanofluid in the annulus of double-helical coiled tubes were experimentally and numerically carried out. The purpose was to investigate the effect of combined enhancement techniques of nanofluid and helicoid tube shape on the performance of a double tube heat exchanger. The effects of concentration of nanoparticles, Reynolds number, coil curvature ratio, and flow arrangement through the annulus of double-helical coiled tube were the main points of interest. Three coiled tube heat exchangers were manufactured and experimentally tested to study the design parameters on the performance of such a heat exchanger. A three-dimensional numerical computational fluid dynamic (CFD) model was developed to get additional insights on the thermal performance of double helically coiled tubes with nanofluid on a level of details not always available in experiments. It was found that the Al2O3–water nanofluid achieved an enhancement by 32% on the overall heat transfer coefficient. The heat exchanger effectiveness, heat transfer per unit pumping power, and the Nusselt number were also presented for different design parameters.

Author(s):  
Mahmoud Abdelmagied

In this study, the thermofluid characteristics of double spirally coiled tube heat exchanger (DSCTHE) were investigated numerically. A three-dimensional (3D) computational fluid dynamic (CFD) model was developed using ansys 14.5 software package. To investigate the heat transfer and pressure drop characteristics of DSCTHE, the Realize k–ε turbulence viscous model had been applied with enhanced wall treatment for simulating the turbulent thermofluid characteristics. The governing equations were solved by a finite volume discretization method. The effect of coil curvature ratio on DSCTHE was investigated with three various curvature ratios of 0.023–0.031 and 0.045 for inner tube side and 0.024–0.032–0.047 for annular side. The effects of addition of Al2O3 nanoparticle on water flows inside inner tube side or annular side with different volume concentrations of 0.5%, 1%, and 2% were also presented. The numerical results were carried out for Reynolds number with a range from 3500 to 21,500 for inner tube side and from 5000 to 24,000 for annular side, respectively. The obtained results showed that with increasing coil curvature ratio, a significant effect was discovered on enhancing heat transfer in DSCTHE at the expense of increasing pressure drop. The results also showed that the heat transfer enhancement was increased with increasing Al2O3 nanofluid concentration, and the penalty of pressure drop was approximately negligible.


Author(s):  
Hamidreza Rastan ◽  
Tim Ameel ◽  
Björn Palm

Abstract Heat exchangers with mini- and micro-channel components are capable of high energy exchange due to their incumbent large surface area to volume ratio. Concurrently, recent advances in additive manufacturing simplify the creation of metallic minichannels that incorporate turbulators for heat transfer enhancement. As part of the development of a minichannel heat exchanger with turbulators, this study analyzes the three-dimensional conjugate heat transfer and laminar flow in a minichannel heat exchanger equipped with rectangular winglet vortex generators (VGs) through numerical simulation. The minichannels have a hydraulic diameter of 2.86 mm and are assumed to be made from aluminum alloy AlSi10Mg. This material is one of the popular alloys in the additive manufacturing industry (three-dimensional (3D) printing) because of its light weight and beneficial mechanical and thermal properties. The working fluid is distilled water with temperature-dependent thermal properties. The minichannel is heated by a constant heat flux of 5 W cm−2 and the Reynolds number is varied from 230 to 950. The simulations are performed using the COMSOL® platform, which solves the governing mass, momentum, and energy equations based on the finite element method. The effect of the VG design parameters, which include VG angle of attack, height, length, thickness, longitudinal pitch, and distance from the sidewalls, is investigated. It is found that the generation of three-dimensional vortices caused by the presence of the vortex generators can notably boost the convective heat transfer, at the cost of increased pressure drop, potentially reducing the heat exchanger size for a given heat duty. A sensitivity analysis indicates that the angle of attack, VG height, VG length, and longitudinal pitch have the most significant effects on the heat transfer and flow friction characteristics. In contrast, the VG thickness and distance from the sidewalls only had minor influences on the heat exchanger performance over the studied range of design parameters.


Author(s):  
Sang-Moon Lee ◽  
Kwang-Yong Kim

Numerical analyses for pressure drop and heat transfer in the flow channels of a printed circuit heat exchanger have been performed numerically. Three-dimensional Reynolds-averaged Navier-Stokes equations have been solved in conjunction with the shear stress transport model as a turbulence closure. The numerical solutions are validated with the available experimental results of the reference shape. The effects of two design parameters, namely, the channel angle and the ellipse aspect ratio of the cold channel, on the heat transfer and the friction performance have been evaluated.


2014 ◽  
Vol 508 ◽  
pp. 141-145
Author(s):  
Xian Fang Hu ◽  
Yu Yun Li ◽  
Yan Hua Chen ◽  
Zhong Yi Yu

Through the three-dimensional heat transfer simulation of different periodic running of 3×3 tube group during one running period, the article draw the influence of vertical buried tube heat exchanger heat transfer performance under the different start-stop times, when total time is certain, shortening the continuous time of intermittent operation (increasing the start and stop times) helps promote the unit energy efficiency as the outlet water temperature change of the heat exchanger is toward to the favorable direction, and the trend of the change showed first increased and then decreased with the increase of start-stop times. Increasing the number of start and stop times do more contribution to promote the energy efficiency of the heat pump unit under the Working condition of refrigeration.


Sign in / Sign up

Export Citation Format

Share Document