A Study of Improving the Formability of the Commercial Pure Titanium Foils

Author(s):  
Jiaqi Zhu ◽  
Alex Nunnally ◽  
Jenn-Terng Gau ◽  
Siguang Xu

Abstract In order to obtain the optimum forming process for commercial pure titanium grade 2 foils, a series of tensile tests and micro scale limited dome height (µ-LDH) tests at four temperatures, and meso scale limited dome height tests (meso-LDH) with three punch speeds were conducted on the as-received foils with a thickness of 75 µm. The effects of temperature, geometry, and high-velocity impact were investigated to understand their influences on the formability of the foils. It has been found in the tensile tests that the formability can be improved by elevating temperatures; this has been validated by the µ-LDH tests. Based on forming limit diagrams (FLDs) of the meso-LDH specimens, the high-velocity impact forming process results in not only much better formability but also more uniform thickness distributions than the quasi-static. By analyzing the fractographical scanning electron microscope (SEM) pictures of the meso-LDH specimens, it has been proven that the formability of the foils by using high-velocity impact process is superior to the conventional process. Furthermore, high-velocity impact causes forming limit curve (FLC) to shift in the upper right direction on the right-hand side of FLD. Therefore, it is suggested forming the foils by using high-velocity impact forming process at the elevated temperature for obtaining a better formability and more uniform thickness distribution. It is also recommended to make the radius of the LDH hemisphere punch close to the smallest feature of the designed products for obtaining more accurate FLCs.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ji-Yeon Shim ◽  
Bong-Yong Kang

Electrohydraulic forming (EHF), high-velocity forming technology, can improve the formability of a workpiece. Accordingly, this process can help engineers create products with sharper edges, allowing a product’s radius of curvature to be less than 2 mm radius of curvature. As a forming process with a high-strain rate, the EHF process produces a shockwave and pressure during the discharge of an electrical spark between electrodes, leading to high-velocity impact between the workpiece and die. Therefore, the objective of this research is to develop an EHF process for forming a lightweight materials case with sharp edges. In order to do so, we employed A5052-H32, which has been widely used in the electric appliance industry. After drawing an A5052-H32 Forming Limit Diagram (FLD) via a standard limiting dome height (LDH) test, improvements to the formability via the EHF process were evaluated by comparing the strain between the LDH test and the EHF process. From results of the combined formability, it is confirmed that the formability was improved nearly twofold, and a sharp edge with less than 2 mm radius of curvature was created using the EHF process.


2004 ◽  
Vol 01 (01) ◽  
pp. 171-200 ◽  
Author(s):  
XIAOQING TENG ◽  
TOMASZ WIERZBICKI

An adequate ductile fracture locus has to be developed to reasonably model crack initiation and propagation in high velocity impact. Most of the fracture loci in the literature were proposed on the basis of tensile tests while in high velocity impact cracks usually occur in the region where shear and compression are dominant. In this paper, perforation response of a thin beam struck by a rigid, blunt projectile moving at a high velocity is simulated using, respectively, uniform fracture strain, Johnson-Cook's, and Bao-Wierzbicki's fracture locus for 2024-T351 aluminum alloy. The former two predict that materials in the impacted area of the beam beneath the rigid mass fail layer by layer, which is not consistent with experimental observations. By contrary, Bao-Wierzbicki's fracture locus, which was developed from up-setting, shear and tensile tests, and covers the whole range of the stress triaxiality, is capable of capturing all of the features occurring in the whole failure process. Numerical results reveal that the beam would fail by shear plugging at a high impact velocity and by tensile tearing at a velocity near the ballistic limit.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


1980 ◽  
Vol 17 (10) ◽  
pp. 763-766 ◽  
Author(s):  
C. C. Chamis ◽  
J. H. Sinclair

1972 ◽  
Vol 5 (5) ◽  
pp. 812-813
Author(s):  
V. V. Kovriga ◽  
V. N. Chalidze

2015 ◽  
Vol 95 ◽  
pp. 49-60 ◽  
Author(s):  
Niyazi Tanlak ◽  
Fazil O. Sonmez ◽  
Mahmut Senaltun

Author(s):  
Yoshihito Yamamoto ◽  
Soichiro Okazaki ◽  
Hikaru Nakamura ◽  
Masuhiro Beppu ◽  
Taiki Shibata

In this paper, numerical simulations of reinforced mortar beams subjected to projectile impact are conducted by using the proposed 3-D Rigid-Body-Spring Model (RBSM) in order to investigate mechanisms of crack propagation and scabbing mode of concrete members under high-velocity impact. The RBSM is one of the discrete-type numerical methods, which represents a continuum material as an assemblage of rigid particle interconnected by springs. The RBSM have advantages in modeling localized and oriented phenomena, such as cracking, its propagation, frictional slip and so on, in concrete structures. The authors have already developed constitutive models for the 3D RBSM with random geometry generated Voronoi diagram in order to quantitatively evaluate the mechanical responses of concrete including softening and localization fractures, and have shown that the model can simulate cracking and various failure modes of reinforced concrete structures. In the target tests, projectile velocity is set 200m/s. The reinforced mortar beams with or without the shear reinforcing steel plates were used to investigate the effects of shear reinforcement on the crack propagation and the local failure modes. By comparing the numerical results with the test results, it is confirmed that the proposed model can reproduce well the crack propagation and the local failure behaviors. In addition, effects of the reinforcing plates on the stress wave and the crack propagation behaviors are discussed from the observation of the numerical simulation results. As a result, it was found that scabbing of reinforced mortar beams subjected to high velocity impact which is in the range of the tests is caused by mainly shear deformation of a beam.


2008 ◽  
Vol 104 (1) ◽  
pp. 013533 ◽  
Author(s):  
Timothy J. Holmquist ◽  
Gordon R. Johnson

2021 ◽  
Author(s):  
M. K. Faidzi ◽  
S. Abdullah ◽  
M. F. Abdullah ◽  
A. H. Azman ◽  
S. S. K. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document