kink bands
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 36)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 5 (11) ◽  
pp. 296
Author(s):  
Raffael Bogenfeld ◽  
Christopher Gorsky

The behavior of impact damaged composite laminates under cyclic load is crucial to achieve a damage tolerant design of composite structures. A sufficient residual strength has to be ensured throughout the entire structural service life. In this study, a set of 27 impacted coupon specimens is subjected to quasi-static and cyclic compression load. After long intervals without detectable damage growth, the specimens fail through the sudden lateral propagation of delamination and fiber kink bands within few load cycles. Ultrasonic inspections were used to reveal the damage size after certain cycle intervals. Through continuous dent depth measurements during the cyclic tests, the evolution of the dent visibility was monitored. These measurements revealed a relaxation of the indentation of up to 90% before ultimate failure occurs. Due to the distinct relaxation and the short growth interval before ultimate failure, this study confirms the no-growth design approach as the preferred method to account for the damage tolerance of stiffened, compression-loaded composite laminates.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1235
Author(s):  
Lei Cai ◽  
Mohamed Jebahi ◽  
Farid Abed-Meraim

The present paper aims at providing a comprehensive investigation of the abilities and limitations of strain gradient crystal plasticity (SGCP) theories in capturing different kinds of localization modes in single crystals. To this end, the small deformation Gurtin-type SGCP model recently proposed by the authors, based on non-quadratic defect energy and the uncoupled dissipation assumption, is extended to finite deformation. The extended model is then applied to simulate several single crystal localization problems with different slip system configurations. These configurations are chosen in such a way as to obtain idealized slip and kink bands as well as general localization bands, i.e., with no particular orientation with respect to the initial crystallographic directions. The obtained results show the good abilities of the applied model in regularizing various kinds of localization bands, except for idealized slip bands. Finally, the model is applied to reproduce the complex localization behavior of single crystals undergoing single slip, where competition between kink and slip bands can take place. Both higher-order energetic and dissipative effects are considered in this investigation. For both effects, mesh-independent results are obtained, proving the good capabilities of SGCP theories in regularizing complex localization behaviors. The results associated with higher-order energetic effects are in close agreement with those obtained using a micromorphic crystal plasticity approach. Higher-order dissipative effects led to different results with dominant slip banding.


2021 ◽  
Author(s):  
ANSHUL SINGHAL ◽  
AMY LANGHORST ◽  
ANKUSH BANSAL ◽  
MIHAELA BANU ◽  
ALAN TAUB

Natural plant fibers compared to glass fibers can provide a cost effective, lightweight and carbon negative reinforcement for polymer composites. However, the current commercial fiber extraction process induces defects including middle lamellae weakening during retting and kink bands during mechanical working. This leads to high variability in mechanical properties, making these fibers less favorable for structural applications at industrial scale. The aim of current research is to reduce this variability by studying the underlying mechanisms of natural fiber extraction to minimize fiber damage occurring at various steps in the process. In this study, flax stems were retted using the conventional dew/field and lab scale controlled enzymatic retting. The hand decorticated fibers from both methods were compared and enzymatic retting showed promising results in producing fine and uniform fibers as compared to fibers extracted by dew retting. To establish the constitutive parameters of the fibers for Finite Element Modeling (FEM), single retted flax stems were compression tested using a Texture Analyzer. This data can serve as the basis for modeling the mechanical deformation of plant stems passing through breaking rollers which is the first step in extraction after retting. The goal is to optimize the roller design and process conditions required to extract fibers with minimal damage and variability.


2021 ◽  
Author(s):  
JING XUE ◽  
KEDAR KIRANE

The size effect in the structural strength of fiber reinforced composites has been typically analyzed for tensile failures. However, this is not true for the equally important compressive failures, primarily due to the difficulties in conducting compression tests on specimens of multiple sizes. These size effects are analyzed here numerically for two important compressive failure mechanisms in composites, viz. (i) fiber kink bands forming under longitudinal compression (typically accompanied by axial splitting matrix cracks) and (ii) inclined shear cracks forming under transverse compression. The former mechanism is modeled by a semi-multiscale microplane model, while the latter by the fixed crack model. Both models are calibrated and verified using available test data on carbon fiber composites and then used to predict the failure and load bearing capacities of geometrically scaled pre-cracked specimens of different sizes. In all cases, the predicted failure is found to be of a propagating nature, accompanied by release of strain energy from the specimen causing a distinct size effect in the nominal strength. For the composite considered here, under longitudinal compression, the fracture process zone (FPZ) is found to be fairly small (<1 mm) and the strength size effect is seen to follow linear elastic fracture mechanics (LEFM). The size effect deviates from LEFM for smaller specimen sizes due to increased flaw size insensitivity but cannot be fitted by Bažant's size effect law since the geometric similarity of the failure mode is lost. On the other hand, under transverse compression the FPZ is found to be much larger (34 to 42 mm) and the size effect is found to obey Bažant's size effect law, deviating from LEFM. The failure is geometrically similar despite being inclined to the pre-crack. These findings provide evidence of the general applicability of fracture mechanics-based size effect laws to compressive failure in fiber composites, and prompt suitable experimental investigations.


Author(s):  
Karol Marek Golasiński ◽  
Jacek Janiszewski ◽  
Judyta Sienkiewicz ◽  
Tomasz Płociński ◽  
Maciej Zubko ◽  
...  

AbstractThe quasi-static and high strain rate compressive behavior of Gum Metal with composition Ti-36Nb-2Ta-3Zr-0.3O (wt pct) has been investigated using an electromechanical testing machine and a split Hopkinson pressure bar, respectively. The stress–strain curves obtained for Gum Metal tested under monotonic and dynamic loadings revealed a strain-softening effect which intensified with increasing strain rate. Moreover, the plastic flow stress was observed to increase for both static and dynamic loading conditions with increasing strain rate. The microstructural characterization of the tested Gum Metal specimens showed particular deformation mechanisms regulating the phenomena of strain hardening and strain softening, namely an adiabatic shear band formed at ~ 45 deg with respect to the loading direction as well as widely spaced deformation bands (kink bands). Dislocations within the channels intersecting with twins may cause strain hardening while recrystallized grains and kink bands with crystal rotation inside the grains may lead to strain softening. A constitutive description of the compressive behavior of Gum Metal was proposed using a modified Johnson–Cook model. Good agreement between the experimental and the numerical data obtained in the work was achieved.


2021 ◽  
pp. 130653
Author(s):  
Hidetoshi Somekawa ◽  
Yoshikazu Todaka ◽  
Daisuke Ando ◽  
Motohiro Yuasa
Keyword(s):  

2021 ◽  
Author(s):  
Sheng Fan ◽  
David Prior ◽  
Travis Hager ◽  
Andrew Cross ◽  
David Goldsby ◽  
...  

Kinking can accommodate significant amounts of strain during crystal plastic deformation under relatively large stresses and may influence the mechanical properties of cold planetary cryosphere. To better understand the origins, mechanisms, and microstructural effects of kinking, we present detailed microstructural analyses of coarse-grained ice (~1300 µm) deformed under uniaxial compression at -30°C. Microstructural data are generated using cryogenic electron backscattered diffraction (cryo-EBSD). Deformed samples have bimodal grain size distributions, with thin and elongated (aspect ratio ≥ 4) kink domains that develop within, or at the tips of, remnant original grains (≥ 300 µm, aspect ratio < 4). Small, equiaxed subgrains also develop along margins of remnant grains. Moreover, many remnant grains are surrounded by fine-grained mantles of small, recrystallized grains (< 300 µm, aspect ratio < 4). Together, these observations indicate that grain nucleation is facilitated by both kinking and dynamic recrystallization (via subgrain rotation). Low- (< 10°) and high-angle (mostly > 10°, many > 20°) kink bands within remnant grains have misorientation axes that lie predominantly within the basal plane. Moreover, previous studies suggest the kinematics of kinking and subgrain rotation should be fundamentally the same. Therefore, progressive kinking and subgrain rotation should be crystallographically controlled, with rotation around fixed misorientation axes. Furthermore, the c-axes of most kink domains are oriented sub-perpendicular to the sample compression axis, indicating a tight correlation between kinking and the development of crystallographic preferred orientation. Kink band densities are the highest within remnant grains that have basal planes sub-parallel to the compression axis (i.e., c-axes perpendicular to the compression axis)—these data are inconsistent with models suggesting that, if kinking is the only strain-accommodating process, there should be higher kink band densities within grains that have basal planes oblique to the compression axis (for low kink-host misorientation angles, e.g., ≤ 20°, as in this study). One way to rationalize this inconsistency between kink models and experimental observations is that kinking and dynamic recrystallization are both active during deformation, but their relative activities depend on the crystallographic orientations of grains. For grains with basal planes sub-parallel to the compression axis, strain-induced GBM is inhibited, and large intragranular strain incompatibilities can be relaxed via kinking, when other processes such as subgrain rotation recrystallization are insufficient. For grains with basal planes oblique to the compression axis, strain-induced grain boundary migration (GBM) might be efficient enough to relax the strain incompatibility via selective growth of these grains, and kinking is therefore less important. For grains with basal planes sub-perpendicular to the compression axis, kink bands are seldom observed—for these grains, the minimum shear stress required for kinking exceeds the applied compressive stress, such that kinks cannot nucleate.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Alka Tripathy-Lang
Keyword(s):  

As Earth ruptures, micas kink. These kink bands hide in rocks millions of years old, preserving evidence of past quakes.


2021 ◽  
pp. 111348
Author(s):  
Hidetoshi Somekawa ◽  
Daisuke Ando ◽  
Koji Hagihara ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document