Resilience of Complex Adaptive Systems: A Pedagogical Framework for Engineering Education and Research

Author(s):  
T. Agami Reddy

Abstract The discourse on resilience, currently at the forefront of research and implementation in a wide variety of fields, is confusing because of its multi-disciplinary/spatial/temporal nature. Resilience analysis is a discipline that allows the assessment and enhancement of the coping and recovery behaviors of systems when subjected to short-lived high-impact external shocks leading to partial or complete failure. This paper, meant for pedagogical teaching and research formulation, starts by providing an overview of different aspects of resilience in general and then focuses on communities and regions that are complex adaptive systems (CAS) involving multiple engineered infrastructures providing essential services to local inhabitants and adapted to available natural resources and social requirements. Next, for objective analysis and assessment, it is proposed that resilience be characterized by four different quantifiable sub-attributes. This paper then describes the standard technocentric manner in which different temporal phases during and in the aftermath of disasters are generally visualized and analyzed, and discusses how these relate to reliability and risk analyses. Subsequently, two prevalent types of frameworks are described and representative literature reviewed: (i) those that aim at improving general resilience via soft methods such as subjective means (interviews, narratives) and census data, and (ii) those that are meant to enhance specific resilience under certain threat scenarios using hard/objective methods such as data-driven analysis and performance-predictive modeling methods, akin to resource allocation problems in operations research. Finally, the need for research into an integrated framework is urged; one that could potentially combine the strengths of both approaches.

Author(s):  
Agami Reddy ◽  
Braden Allenby

Abstract The term “sustainability” has acquired an all-encompassing ambiguous aura, given that it touches on all facets of human endeavor. This paper, meant to provide a pedagogical framework for engineering education, starts by pointing out that since technology is an important and fundamental driver of current human development and inextricably interwoven into the societal fabric, the discourse on sustainability and sustainable development should evolve beyond its environmental and social origins. One should explicitly recognize the importance of technology in profundly shaping the discourse and not simply view it as an enabler of meeting preset equipment and system performance targets. In order to fragment the monolithic implied by the term “sustainability,” a categorization is then suggested ranging from individual products to wicked/complex adaptive systems as a fundamental level of separation. Subsequently, it is argued that the objective analysis of the multidimensional-spatial-temporal nature of sustainability, meant for the assessment of actionable design alternatives and for tracking the status of implemented measures, requires the definition of a small set of quantifiable umbrella capabilities and sub-attributes. The need to identify direct or surrogate parameters/variables and performance measures/metrics which characterize these sub-attributes is then discussed and mapped onto the application categories. Weighting and aggregating these sub-attributes to quantify the umbrella attributes necessarily introduce normative/aspirational preferences/biases of the various stakeholders, and this issue is also discussed. Finally, the two prevalent sustainability assessment frameworks, namely, the structure-based and the performance-based, are reviewed in terms of strengths and weaknesses and illustrative publications cited, and it is urged that more research be undertaken to synthesize these somewhat disparate approaches in dealing with natural, social, economic, political, and technological systems and organizations.


Author(s):  
Kristin Erickson

The chapter considers algorithmic music as the ‘sonification’ of algorithms, a term coined by Carla Scaletti to describe the mapping of numerically represented relations in some domain to relations in an acoustic domain. The chapter looks at the range of ways this concept has been used by the author in composing her works. The chapter identifies isomorphic relationships between algorithms and collaboration, music, and performance, and extends the boundary of the computer to include systems of people and sound. The definition of music and performance is extended to include process, rules, machines, and execution. Examples discussed include performing a bubble sort, pandemic performances (using principles of complex adaptive systems), Mandelbrot music, and M.T.Brain/Telebrain, which send complex algorithmic instructions to multiple performers in real time.


2020 ◽  
Author(s):  
Wiljeana Glover ◽  
Noa Nissinboim ◽  
Eitan Naveh

Abstract Background: Health innovation has been dominant in the pharmaceutical, biomedical, and to some extent insurance institutions for quite some time. Now we are in an innovation age for healthcare delivery. Some note that the complexity of healthcare delivery may make innovation in this setting more difficult and may require more adaptive solutions. The aim of this study is to examine the relationship between departmental complexity and innovation, using a complex adaptive systems approach in a hospital setting. Methods: We conducted a quantitative study of 31 hospital units within one hospital and use complex adaptive systems (CAS) theory to examine how two CAS factors, autonomy and performance orientation, moderate the relationship between departmental complexity and innovation. Results: We find that departmental complexity is associated with higher innovation performance when autonomy is low rather than high. We also find that departmental complexity is associated with higher innovation performance when performance orientation is high rather than low. Our findings make three distinct contributions: we quantify the influence of complexity on innovation success in the health care sector, we examine the impact of autonomy on innovation in health care, and we are the first to examine performance orientation on innovation in health care. Conclusions: This study tackles the long debate about the influence of complexity on healthcare delivery, particularly innovation. Instead of being subject to the influence of complexity with no means of making progress or gaining control, hospitals looking to implement innovation programs should provide guidance to teams and departments regarding the type of innovation sought and provide support in terms of time and management commitment. Hospitals should also find ways to promote and make successful pilot implementations of such innovations visible in the organization. A close connection between the targeted innovation and the overall success and performance of the hospital unit is ideal.


Sign in / Sign up

Export Citation Format

Share Document