Assessment of Photovoltaic Capabilities in Urban Environments: A Case Study of Islamabad, Pakistan

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Muhammad Zubair ◽  
Sajid Ghuffar ◽  
Muhammad Shoaib ◽  
Ahmed Bilal Awan ◽  
Abdul Rauf Bhatti

Abstract Photovoltaic (PV) estimation in an urban environment requires detection of rooftop area, design of PV system based on optimization on PV placement distance and the study of additional benefit of lower cooling load of building by shading provided by PV panels. The study is aimed at policymakers to introduce renewable energy policy toward net-zero energy buildings in urban areas. In this research, the capital city of Pakistan, Islamabad, is analyzed for rooftop PV capabilities using deep learning algorithms. The area of the rooftop is calculated by extracting buildings in high-resolution satellite imagery using a deep learning algorithm. The site location is analyzed for available solar energy resources. The distance between the rooftop-PV array is optimized based on self-shading losses, coefficient of performance, energy yield, net-zero energy analysis, and reduction of cooling load of the building provided by PV arrays as shading devices. The 40-km2 area of Islamabad considered in this research can generate 1038 GWh of solar energy annually from its 4.3-km2 rooftop area by installed capacity of 447 MW PV panels rows placed at 0.75 m apart. The electricity generated by Islamabad can curtail residential load from the national grid and form a near net-zero energy zone while the electrical energy from the grid can be provided to the industries to enhance the economy and reduce unemployment in Pakistan.

2019 ◽  
Vol 254 ◽  
pp. 113709 ◽  
Author(s):  
Xian Li ◽  
Alexander Lin ◽  
Chin-Huai Young ◽  
Yanjun Dai ◽  
Chi-Hwa Wang

Author(s):  
Mostafa Esmaeili Shayan

The Net Zero Energy Building is generally described as an extremely energy-efficient building in which the residual electricity demand is provided by renewable energy. Solar power is also regarded to be the most readily available and usable form of renewable electricity produced at the building site. In contrast, energy conservation is viewed as an influential national for achieving a building’s net zero energy status. This chapter aims to show the value of the synergy between energy conservation and solar energy transfer to NZEBs at the global and regional levels. To achieve these goals, both energy demand building and the potential supply of solar energy in buildings have been forecasted in various regions, climatic conditions, and types of buildings. Building energy consumption was evaluated based on a bottom-up energy model developed by 3CSEP and data inputs from the Bottom-Up Energy Analysis System (BUENAS) model under two scenarios of differing degrees of energy efficiency intention. The study results indicate that the acquisition of sustainable energy consumption is critical for solar-powered net zero energy buildings in various building styles and environments. The chapter calls for the value of government measures that incorporate energy conservation and renewable energy.


2015 ◽  
Vol 10 (3) ◽  
pp. 89-115 ◽  
Author(s):  
Changhai Peng ◽  
Lu Huang ◽  
Bangwei Wan

The connotations and denotations of the term net-zero-energy solar buildings (NZESBs) have been in constant flux because of continuous developments in solar heating technology, solar photovoltaic (PV) technology, building energy-storage technology, regional energy-storage technology, and energy-management systems. This paper focuses on innovative strategies for implementing NZESBs in Nanjing, China. These strategies include integrated architectural design, including passive solar design (respecting climatic characteristics and conducting integrated planning based on the environment, building orientation, distance between buildings, building shape, ratio of window area to wall area, and building envelope) and active solar design (integration of the solar-energy-collecting end of the system – collectors and PV panels – with the building surface – roof, wall surfaces, balconies, and sun-shading devices – and the integration of solar-energy transfer and storage equipment with the building). Some Nanjing-specific recommendations and findings on NZESBs are proposed. The results illustrate that NZESBs can be realized in Nanjing if solar energy technologies are appropriately integrated with the characteristics of Nanjing's geography, climate and buildings.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The concept of Net-Zero Energy in building refers to a building which has an annual balance of energy flow at the utility meter of zero. The concept implies that the building may consume energy from an external provider at times in order to satisfy the building demands, but at other times it must produce enough on-site energy to compensate for this energy. The use of renewable energy technologies is implicit as the source of energy to compensate for any energy used from an external provider. Solar photovoltaic is a proved technology for achieving Net-Zero Energy building but economic factors has limited its broad use. The design stage of a solar photovoltaic project is critical to make a project feasible. In the design stage, the equipment sizing must be optimized in order to reduce the initial capital cost and, therefore, improve the economics of the project. For houses, which is the focus of this paper, a stand-alone solar photovoltaic system must supply the house energy demand at all times since it is not connected to the electric grid. As a means to size the system, data of solar energy availability must be used to ensure that the system will provide enough energy to satisfy the energy demand as well as provide energy to charge the batteries that will provide the energy required when the solar energy is not available. In this paper, a methodology to optimize the size of the photovoltaic array and the battery bank is proposed. The methodology accounts for Typical Meteorological Year data (TMY3) to ensure that the system, based on accepted statistical data, will be able to satisfy the energy demand at all times. An example that uses energy demand data obtained from the simulation of a house using the software EnergyGauge is used to illustrate the implementation of the methodology.


Author(s):  
Janar KALDER ◽  
Alo ALLIK ◽  
Hardi HÕIMOJA ◽  
Erkki JÕGI ◽  
Mart HOVI ◽  
...  

The article is concentrated on the energy storage problems arising from microgeneration in private households. The case study involves a small-scale wind and solar electricity production set in a net zero-energy building. Both the net zero-energy building and the microgeneration units are connected to an utility grid. The current article serves to confirm the hypothesis, that the self consumption is at its maximum with the annual 70/30 wind and solar energy mix of in favour of the wind. The maximal self consumption at no additional energy storage in a net zero-energy building is studied as well. Produced and consumed energies are equal, which satisfies the requirements for a net zero-energy building with the utility grid acting as an energy buffer. The consumed energy is used to operate a heat pump, heat up ventilation supply air, run ventilation fans, supplying non-shiftable loads (white goods, TV, lighting etc), heat up domestic hot water via heat pump. To express self consumption, we use the term of supply cover factor, which describes optimally the directly consumed energy in relationship to net consumption or production. In annual scale, the cover factors for a net zero-energy building are equal as the production and consumption are equal as well. Also, seasonal variations in self consumption are studied. According to study results, the annual maximal supply cover factor in a net zero-energy building is 0.375 with 70/30 wind/solar mix. Seasonally, the self consumption is at its maximum in summer when the supply cover factor equals to 0.49.


2014 ◽  
Vol 5 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Cs. Szász

The paper presents an intelligent building (IB) development strategy emphasizing the locally available non-polluting renewable energy resources utilization. Considering the immense complexity of the topic, the implementation strategy of the main energy-flow processes is unfolded, using the net zero-energy building concept (NZEB). Noticeably, in the first research steps the mathematical background of the considered NZEB strategy has been developed and presented. Then careful LabView software-based simulations prove that the adopted strategy is feasible for implementation. The result of the above mentioned research efforts is a set of powerful and versatile software toolkits well suitable to model and simulate complex heating, ventilation and air-conditioning processes and to perform energy balance performance evaluations. Besides the elaborated mathematical models, concrete software implementation examples and measurement data also is provided in the paper. Finally, the proposed original models offer a feasible solution for future developments and research in NZEB applications modelling and simulation purposes.


Sign in / Sign up

Export Citation Format

Share Document