Advanced Exergetic Analysis of a Double-Effect Series Flow Absorption Refrigeration System

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Dario Colorado-Garrido

Abstract This paper contains theoretical results of an advanced exergy study of a double-effect series flow absorption refrigeration cycle. Traditional second law of thermodynamics analysis was performed and revealed the absorber as the component with the highest exergy destruction of the system. In the evaporator, ≈49.34% of the exergy destruction is avoidable and almost in it’s entirety, ≈99.12% is of endogenous nature. The highest potential for improvement of the high-pressure generator is its design and manufacture because ≈67.47% of the endogenous exergy destruction is avoidable. A parametric study was presented to discuss the sensitivity of splitting exergy destruction concepts taking into account temperature variations in the absorber and condenser temperatures and the heat source temperature.

2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


Author(s):  
Thiago De Souza Figueredo ◽  
João Luiz De Medeiros Neto ◽  
Adriano Da Silva Marques ◽  
Carlos Antônio Cabral Dos Santos

<span class="fontstyle0">This work presents the results of the energetic, exergetic and exergoeconomic evaluation of a trigeneration system which is composed of an Organic Rankine Cycle (ORC), a simple effect Absorption Refrigeration System (SRA) and a boiler. The proposed system is driven by the residual heat of an industrial process. A computational code was developed on the EES (Engineering Equation Solver) platform to solve the thermodynamic and exergoeconomic equation of each equipment. The SPECO method (Specific Exergy Costing) was used for the exergoeconomic evaluation. Results indicated which equipment needs optimization in order of priority. The results show that the greatest destruction of exergy occurs in the ORC steam generator (56% of the total), followed by the condenser that presented an exergy destruction of 33%. Conversely, the pump and expander performed better, with low exergy destruction values. The results of the exergoeconomic evaluation also indicate that the steam generator and condenser from ORC need to be optimized before any other equipment, as they obtained the lowest values of the exergoeconomic factor (f</span><span class="fontstyle0">k</span><span class="fontstyle0">) and the highest values of the specific relative cost (r</span><span class="fontstyle0">k</span><span class="fontstyle0">).</span> <br /><br />


Sign in / Sign up

Export Citation Format

Share Document