Numerical Investigation of Transitional Characteristics for Natural-Convection Flow in Open-Ended Inclined Channel Heated From Below

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
D. Talukdar ◽  
C. G. Li ◽  
R. Kurose ◽  
M. Tsubokura

Abstract This report presents an investigation of the characteristics for transitional natural-convection flow in an open-ended inclined channel heated from below in the air under uniform heat flux intensity and non-Boussinesq condition. The investigated range of modified Rayleigh number and inclination is from 5.93 × 106  to 1.45 × 109  and 30–90 deg to the horizontal, respectively. Fine-resolution implicit large Eddy simulation is performed to solve the compressible governing equations using the modified preconditioned all-speed Roe scheme, hybrid boundary condition, and dual-time-stepping technique. The Nusselt number based on the maximum wall-temperature differs significantly while based on averaged wall-temperature is closer to the previously proposed laminar correlations. Transition is found to be pronounced at a lower angle of inclination (30 deg) for the considered heat flux intensity. The absolute magnitude of the critical length for the start and end of the transition when converted to nondimensional parameters is found to be higher compared to similar data for natural convection flow over a flat plate in water but the ratio of the end to start of the transition is found to be comparable. Single-roll longitudinal vortices periodically placed in spanwise direction exists in the transition region whose wavelength is found to be higher than those reported for channel flow under the isothermal condition and flow over a flat plate in water. Correlations for Nusselt number, critical aspect ratio, and vortex wavelength to the modified Rayleigh number are presented.

2008 ◽  
Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca

Miniaturization of devices has received a rapid expansion in the last years and a great attention of research activities is given to microflow due to its new applications of microfluidic systems and components. In the present paper a transient investigation on natural convection in parallel-plate vertical microchannels is carried out numerically. The vertical microchannel is considered asymmetrically or symmetrically heated at uniform heat flux. The first-order model for slip velocity and jump temperature is assumed in microscale conditions. The analysis is performed in laminar boundary layer assumption for different values for different values of Knudsen number, Rayleigh number and the ratio of wall heat flux in order to evaluate their effects on wall temperatures, mass flow rate and Nusselt number. Wall temperature overshoots are detected for the different conditions. These values increase increasing the Knudsen number, Kn, at high Rayleigh number, Ra, whereas for lower Ra the lowest wall temperature are obtained for Kn = 0.05. Mass flow rate increases increasing Kn whereas Nusselt number decreases increasing Kn.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3391-3400
Author(s):  
Abuzar Ghaffari ◽  
Tariq Javed ◽  
Irfan Mustafa ◽  
Fotini Labropulu

In this study, natural convection flow along a vertical wavy surface has been investigated with variable heat flux. The governing equations are transformed into dimensionless PDE by using the non-dimensional variables and then solved numerically by using an implicit finite difference scheme known as Keller Box method. The effects of the parameters amplitude of the wavy surface, ?, exponent of the variable heat flux, m, and Prandtl number on the local skin friction coefficient and local Nusselt number are shown graphically. It is found that for the negative value of exponent of the variable heat flux, m, the local skin friction coefficient increases and Nusselt number decreases but the opposite behavior is observed for the positive values of m. The comparison of limiting case with the previous study is shown through table and it is found that the solution obtained is in excellent agreement with the previous studies.


2016 ◽  
Vol 64 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Roushanara Begum ◽  
MZI Bangalee

Effects of different boundary conditions at the surfaces of the extended computational domain on buoyancy driven natural convection flow in a three dimensional open cavity are studied numerically. This study is carried out for turbulent flow where Rayleigh number is greater than 108. Air is used as working fluid having properties at 25°C temperature and 1atm pressure. To capture the turbulent nature of the flow k - ? model is used. ANSYS CFX software is used to solve the governing equations subject to the corresponding boundary conditions. The methodology is verified through a satisfactory comparison with some published results. Average mass flow, temperature, stream line, contour velocity and velocity profile are studied at different height. An extended computational domain around the physical domain of the cavity at different surrounding conditions is considered to investigate the effect of its existence on the computation. Effects of different surrounding boundary conditions on the physical domain of the cavity are studied and reported.A relation among non-dimensional parameters such as Nusselt number, Rayleigh number, Prandlt number and Reynolds number is also reported.Dhaka Univ. J. Sci. 64(1): 31-37, 2016 (January)


2018 ◽  
Vol 14 (5) ◽  
pp. 1064-1081
Author(s):  
Basant Kumar Jha ◽  
Michael O. Oni

PurposeThe purpose of this paper is to investigate the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.Design/methodology/approachAnalytical solution in terms of Bessel’s function and modified Bessel’s function of order 0 and 1 is obtained for velocity, temperature, Nusselt number, skin friction and mass flow rate.FindingsIt is established that the role of Knudsen number and fluid–wall interaction parameter is to decrease fluid temperature, velocity, Nusselt number and skin friction.Research limitations/implicationsNo laboratory practical or experiment was conducted.Practical implicationsCooling device in electronic panels, card and micro-chips is frequently cooled by natural convection.Originality/valueIn view of the amount of works done on natural convection in microchannel, it becomes interesting to investigate the effect that time-periodic heating has on natural convection flow in a vertical micro-annulus. The purpose of this paper is to examine the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


Author(s):  
Gillian Leplat ◽  
Emmanuel Laroche ◽  
Philippe Reulet ◽  
Pierre Millan

A two-dimensional numerical analysis of a laminar natural convection flow within an air-filled enclosure is proposed in this paper from an unstable configuration previously studied experimentally. The flow is driven by a heated square-section cylinder located at the center of a square-section enclosure. Instabilities are observed for an aspect ratio (height of the cylinder over the height of the cavity) of 0.4 and cause the flow to turn into a three-dimensional and unsteady regime characterized by a symmetry breaking and large scale high amplitude flappings around the cylinder. The multi-physic computational software CEDRE, developed at the ONERA, is used to study this unstable behavior and a time-dependent compressible flow solver is used to perform the two-dimensional simulations under the low Mach number approximation, corresponding to the mid-depth cross-section of the enclosure from the experimental configuration. The first results on the investigation of the first unstable modes confirm the onset of the instabilities at the Rayleigh number of the experiment with asymmetrical motions of the fluid around the cylinder. Further analyses highlight the critical Rayleigh number that defines the instability threshold of the first bifurcation which origin and nature could have been identified. Finally, joint fluid-solid simulations are performed to determine more precisely the role of boundary conditions in the onset of instabilities.


Sign in / Sign up

Export Citation Format

Share Document