Gaussian Process-Driven, Nested Experimental Co-Design: Theoretical Framework and Application to an Airborne Wind Energy System

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Joe Deese ◽  
Peter Tkacik ◽  
Chris Vermillion

Abstract This paper presents and experimentally evaluates a nested combined plant and controller optimization (co-design) strategy that is applicable to complex systems that require extensive simulations or experiments to evaluate performance. The proposed implementation leverages principles from Gaussian process (GP) modeling to simultaneously characterize performance and uncertainty over the design space within each loop of the co-design framework. Specifically, the outer loop uses a GP model and batch Bayesian optimization to generate a batch of candidate plant designs. The inner loop utilizes recursive GP modeling and a statistically driven adaptation procedure to optimize control parameters for each candidate plant design in real-time, during each experiment. The characterizations of uncertainty made available through the GP models are used to reduce both the plant and control parameter design space as the process proceeds, and the optimization process is terminated once sufficient design space reduction has been achieved. The process is validated in this work on a lab-scale experimental platform for characterizing the flight dynamics and control of an airborne wind energy (AWE) system. The proposed co-design process converges to a design space that is less than 8% of the original design space and results in more than a 50% increase in performance.

Author(s):  
Liping Wang ◽  
Don Beeson ◽  
Srikanth Akkaram ◽  
Gene Wiggs

Probabilistic design in complex design spaces is often a computationally expensive and difficult task because of the highly nonlinear and noisy nature of those spaces. Approximate probabilistic methods, such as, First-Order Second-Moments (FOSM) and Point Estimate Method (PEM) have been developed to alleviate the high computational cost issue. However, both methods have difficulty with non-monotonic spaces and FOSM may have convergence problems if noise on the space makes it difficult to calculate accurate numerical partial derivatives. Use of design and Analysis of Computer Experiments (DACE) methods to build polynomial meta-models is a common approach which both smoothes the design space and significantly improves the computational efficiency. However, this type of model is inherently limited by the properties of the polynomial function and its transformations. Therefore, polynomial meta-models may not accurately represent the portion of the design space that is of interest to the engineer. The objective of this paper is to utilize Gaussian Process (GP) techniques to build an alternative meta-model that retains the properties of smoothness and fast execution but has a much higher level of accuracy. If available, this high quality GP model can then be used for fast probabilistic analysis based on a function that much more closely represents the original design space. Achieving the GP goal of a highly accurate meta-model requires a level of mathematics that is much more complex than the mathematics required for regular linear and quadratic response surfaces. Many difficult mathematical issues encountered in the implementation of the Gaussian Process meta-model are addressed in this paper. Several selected examples demonstrate the accuracy of the GP models and efficiency improvements related to probabilistic design.


2021 ◽  
pp. 0309524X2110667
Author(s):  
Souhir Tounsi

The study presented in this paper concerns the development of a new methodology for design and controlling a wind energy generation chain. This methodology is based on combined Analytical-Finite Element-Experimental method. This type of converter chosen is an AC-DC inverter with IGBTs to improve the robustness of the power chain structure. It offers a reduction of the cost of the power chain and the improvement of the performances of the global studied system, as the control at power factor equal to unity and providing an electromagnetic torque which is added to the useful torque in order to extract the maximal energy. The control algorithms permit to regulate Le charging voltage and current in their rated values considered as optimal battery charging voltage and current. The global model of the power chain is implemented under the Matlab-Sumilink simulation environment for performance and efficiency analysis.


Author(s):  
Joe Deese ◽  
Chris Vermillion

This paper presents a nested codesign (combined plant and controller design) formulation that uses optimal design of experiments (DoE) techniques at the upper level to globally explore the plant design space, with continuous-time control parameter adaptation laws used at the lower level. The global design space exploration made possible through optimal DoE techniques makes the proposed methodology appealing for complex, nonconvex optimization problems for which legacy approaches are not effective. Furthermore, the use of continuous-time adaptation laws for control parameter optimization allows for the extension of the proposed optimization framework to the experimental realm, where control parameters can be optimized during experiments. At each full iteration, optimal DoE are used to generate a batch of plant designs within a prescribed design space. Each plant design is tested in either a simulation or experiment, during which an adaptation law is used for control parameter optimization. Two techniques are proposed for control parameter optimization at each iteration: extremum seeking (ES) and continuous-time DoE. The design space is reduced at the end of each full iteration, based on a response surface characterization and quality of fit estimate. The effectiveness of the approach is demonstrated for an airborne wind energy (AWE) system, where the plant parameters are the center of mass location and stabilizer area, and the control parameter is the trim pitch angle.


Sign in / Sign up

Export Citation Format

Share Document