Methodology for optimal design and control of wind energy system based on simplifying assumptions

2021 ◽  
pp. 0309524X2110667
Author(s):  
Souhir Tounsi

The study presented in this paper concerns the development of a new methodology for design and controlling a wind energy generation chain. This methodology is based on combined Analytical-Finite Element-Experimental method. This type of converter chosen is an AC-DC inverter with IGBTs to improve the robustness of the power chain structure. It offers a reduction of the cost of the power chain and the improvement of the performances of the global studied system, as the control at power factor equal to unity and providing an electromagnetic torque which is added to the useful torque in order to extract the maximal energy. The control algorithms permit to regulate Le charging voltage and current in their rated values considered as optimal battery charging voltage and current. The global model of the power chain is implemented under the Matlab-Sumilink simulation environment for performance and efficiency analysis.

1983 ◽  
Vol 105 (4) ◽  
pp. 401-407 ◽  
Author(s):  
K. M. Foreman

By means of a case study, we examine the effect of size on the estimated weight and cost of an advanced wind energy conversion system, the diffuser-augmented wind turbine (DAWT) concept. Preliminary designs are described for three DAWT sizes (ratings) in each of three construction approaches: all-aluminum, ferrocement, and a hybrid fiberglass reinforced plastics (FRP) diffuser shell on an aluminum frame. Common design criteria are employed in designs for these three materials. Installed cost estimates are generated by professional industrial estimators. Excluding the foundation, it is concluded that for geometrically similar DAWTs the weight-to-power ratio varies approximately as the rotor diameter to the one third power, over a 4 to 1 change in rotor diameter, 2.7–11 m (9–36 ft). Futhermore, because the total direct production cost of these various DAWT units and designs proves to change by about D1.5, the cost-to-power ratio is approximately proportional to D−.5 and the cost/weight ratio varies as D−1/6. Therefore, for the investigated DAWT unit ratings between 5 and 200 kW, the larger units appear increasingly to become more efficient structures with apparently lower specific costs (dollars per kW) for each of three candidate construction approaches.


1985 ◽  
Vol 107 (1) ◽  
pp. 78-87
Author(s):  
E. W. Jacobs

The Tornado Wind Energy System (TWES) concept utilizes a wind-driven vortex confined by a hollow tower to create a low-pressure core intended to serve as a turbine exhaust reservoir. The turbine inlet flow is provided by a separate ram air supply. Numerous experimental and analytical research efforts have investigated the potential of the TWES as a wind energy conversion system (WECS). The present paper summarizes and analyzes much of the research to date on the TWES. A simplified cost analysis incorporating these research results is also included. Based on these analyses, the TWES does not show any significant promise of improving on either the performance or the cost of energy attainable by conventional WECS. The prospects for achieving either a system power coefficient above 0.20 or a cost of energy less than $0.50/kWh (1979 dollars) appear to be poor.


Sign in / Sign up

Export Citation Format

Share Document