Pool Boiling Heat Transfer Augmentation in a Novel Aqueous Binary Mixture of Surfactants

2020 ◽  
Author(s):  
Prashant Pawar ◽  
Abdul Najim ◽  
Anil Acharya ◽  
Ashok Pise

Abstract This paper investigates the augmentation of heat transfer during pool boiling in a novel aqueous binary mixture of surfactants. The surfactants used were Sodium Dodecyl Sulphate (anionic), Centrimonium Bromide (cationic), and Nicotine (non-ionic). The aqueous binary mixtures SDS-CTAB, CTAB- Nicotine, and SDS-Nicotine were prepared on the volume percentage basis. The augmentation was investigated by studying a single bubble growth in an aqueous binary mixture of surfactants. The investigation was conducted at two values of heat fluxes to probe the effect of heat flux on bubble growth. A reduction in surface tension was attained by SDS-CTAB, CTAB-Nicotine, and SDS-Nicotine aqueous binary systems compared to its individual aqueous surfactant solutions at their optimum concentrations. The most significant surface tension result was obtained by the novel SDS-Nicotine aqueous binary system at 25:75 volume percentages. A decrement in the bubble departure diameter and an increment in the release frequency were observed for SDS-Nicotine aqueous binary system both heat fluxes. The boiling heat transfer coefficient of SDS-Nicotine aqueous binary system was found to be increased by 36.32% and 58.67% compared to saturated water at low and high heat flux, respectively.

Author(s):  
S. M. Sohel Murshed ◽  
Denitsa Milanova ◽  
Ranganathan Kumar

This paper reports an experimental investigation of the pool boiling heat transfer characteristics of single-walled carbon nanotubes (SWCNTs)-nanofluids. Two main characteristics were studied to identify their influence on boiling heat transfer: one is the surface tension through the addition of surfactant and the other is the chemical treatment of nanotubes sidewalls (i.e. oxidized and untreated sidewalls). A Transmission Electron Microscope was used to study the morphology of the functionalized nanotubes and their deposition on heater wire. The maximum enhancement of both the critical and burnout heat fluxes of this nanofluid over those of the pure deionized water are found to be 492% and 265%, respectively at a surfactant to carbon nanotubes concentration ratio of 1:5. This indicates that high enhancement of heat flux is possible and would depend on the concentration of the surfactants. Present results also demonstrate that CNT-nanofluids in a pool boiling environment can extend the saturated boiling regime and the burnout of the heated surface. The burnout heat flux is found to be a strong function of the relaxation of nanofluid surface tension with the base fluid. Based on the best fit of experimental data, an empirical correlation between the burnout heat flux of nanofluid and its relaxation of surface tension is introduced.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Dwight Cooke ◽  
Satish G. Kandlikar

Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. It was determined that surface modifications to silicon chips can improve the heat transfer coefficient by a factor up to 3.4 times the performance of a plain chip. Surfaces with microchannels have shown to be efficient for boiling heat transfer by allowing liquid to flow through the open channels and wet the heat transfer surface while vapor is generated. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.


2019 ◽  
Vol 8 (8) ◽  
pp. 1617-1631
Author(s):  
Saeid Vafaei ◽  
Hyungdae Kim

Pool boiling heat transfer is an aggressive and complex phenomenon which needs to be simplified for a better understanding of the mechanism of bubble growth and departure and how boiling heat transfer can be enhanced. Single bubble boiling heat transfer is a simple version of boiling phenomenon which has been used to study the effective elements on pool boiling heat transfer. The purpose of the present review paper is to understand how to produce single bubble pool boiling on a heated substrate and investigate, how single bubble boiling phenomenon can be affected by geometry of cavities, cavity size, wettability, roughness, working fluid, subcooling, wall superheat, heat flux, gravity, etc. It was demonstrated that cylindrical cavities are capable to generate stable and continuous bubbling, small temperature fluctuation, low superheat with short waiting period. The cylindrical cavities can be manufactured very easily in small sizes which can be a good candidate to produce single bubble pool boiling. As heat flux increases, smaller cavities start becoming active. For a given depth, as cavity size increases, the bubble growth rate and departure volume increase. Surface wettability is another complex and important factor to modify the single bubble boiling heat transfer. Wettability depends mainly on force balance at the triple contact line which relies on solid–liquid–gas materials. In case of hydrophobic surfaces, the triple line has tendency to move toward liquid phase and expand the radius of triple line, so the initiation of nucleation is easier, the waiting time is shorter, the downward surface tension force becomes bigger since radius of triple line is larger, the bubble departure volume is higher and bubble growth period is longer. The effects of the rest of main parameters on single bubble boiling are discussed in this paper in details. In addition, a theoretical model is developed to predict the liquid-vapor interface for the single bubble boiling. The theoretical model is compared with single bubble boiling experimental data and good results observed.


2014 ◽  
Vol 592-594 ◽  
pp. 1601-1606 ◽  
Author(s):  
Sameer Sheshrao Gajghate ◽  
Anil R. Aacharya ◽  
Anil T. Pise ◽  
Ganesh S. Jadhav

The addition of additives to the water is known to enhance boiling heat transfer. In the present investigation, boiling heat transfer coefficients are measured for Nichrome wire, immersed in saturated water with & without additive. An additive used is 2-Ethyl 1-Hexanol with varying concentrations in the range of 10-10000 ppm. Extensive experimentation of pool boiling is carried out above the critical heat flux. Boiling behavior i.e. bubble dynamics are observed at higher heat flux for nucleate boiling of water over wide ranges of concentration of additive in water. Results are encouraging and show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient considerably higher, and that there is an optimum additive (500-1000ppm) concentration for higher heat fluxes. An optimum level of enhancement is observed up to a certain amount of additive 500-1000ppm in the tested range. Thereafter significant enhancement is not observed. This enhancement may be due to change in thermo-physical properties i.e. mainly due to a reduction in surface tension of water in the presence of additive.


2019 ◽  
Vol 213 ◽  
pp. 02063
Author(s):  
Robert Pastuszko ◽  
Milena Bedla-Pawlusek ◽  
Robert Kaniowski

Experimental investigations of pool boiling heat transfer on microchannels of variable depth were conducted. The experiments were carried out for water and ethanol at atmospheric pressure. Microchannels of variable depth from 0.2 to 2.8 mm and width 0.5 mm were uniformly spaced on base surface with pitch of 1 mm. The comparison of heat transfer coefficients for surfaces with variable and constant depth of microchannels was made. At the low and medium heat fluxes structures with constant microchannel depth showed the best boiling heat transfer performance. EX-FH20 (Casio) camera was used to record the images of the entire surface of the specimen. The bubble growth mechanism on the enhanced surface was different from that of plain surface. Visualization investigations were aimed at identifying nucleation sites and determining the bubble growth cycle. Vapor bubbles generate in microchannel spaces, from where they move towards the fin tips, then grow and depart.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Calvin H. Li ◽  
Ting Li ◽  
Paul Hodgins ◽  
G. P. Peterson

Spherical glass and copper beads have been used to create bead packed porous structures for an investigation of two-phase heat transfer bubble dynamics under geometric constraints. The results demonstrated a variety of bubble dynamics characteristics under a range of heating conditions. The bubble generation, growth, and detachment during the nucleate pool boiling heat transfer have been filmed, the heating surface temperatures and heat flux were recorded, and theoretical models have been employed to study bubble dynamic characteristics. Computer simulation results were combined with experimental observations to clarify the details of the vapor bubble growth process and the liquid water replenishing the inside of the porous structures. This investigation has clearly shown, with both experimental and computer simulation evidence, that the millimeter scale bead packed porous structures could greatly influence pool boiling heat transfer by forcing a single bubble to depart at a smaller size, as compared with that in a plain surface situation at low heat flux situations, and could trigger the earlier occurrence of critical heat flux by trapping the vapor into interstitial space and forming a vapor column net at high heat flux situations. The results also proved data for further development of theoretical models of pool boiling heat transfer in bead packed porous structures.


Author(s):  
Dwight Cooke ◽  
Satish G. Kandlikar

Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.


Author(s):  
Chien-Yuh Yang ◽  
Chien-Fu Liu

Attributed to its high heat transfer coefficient, evaporating cooling involving the use of micro heat exchangers is considered a possible thermal management solution for cooling of high heat flux electronic devices. The present work desires to develop high-performance micro heat exchangers operating in the evaporation regime. The pool boiling heat transfer performance on one plain plate and one micro porous coated plate were tested in a vertical open and a 1-mm confined spaces. The test results show that the heat transfer was enhanced by the confined space at low and moderate heat fluxes but degraded at high flux condition on plain surface. The micro porous coating may significantly enhance the pool boiling performance. However, the heat transfer characteristic in confined space is not exactly the same as that on open surfaces. Owing to the interaction of forced removal of the superheated liquid due to the bubble departure and retard the departure of bubbles by the confined plate, there is no much difference for pool boiling heat transfer on micro porous coated surface in confined and unconfined spaces at low and moderate heat fluxes. At high heat flux, large amount of bubbles were confined by the cover plate. This caused the partial dry out and significant degrade on heat transfer performance.


Sign in / Sign up

Export Citation Format

Share Document