A Safety Factor Method for Reliability-Based Component Design

2021 ◽  
pp. 1-34
Author(s):  
Jianhua Yin ◽  
Xiaoping Du

Abstract Reliability-based design (RBD) identifies design variables that maintain reliability at a required level. For many routine component design jobs, RBD may not be practical as it requires nonlinear optimization and specific reliability methods, especially for those design jobs which are performed manually or with a spreadsheet. This work develops a practical approach to reliability-based component design so that the reliability target can be achieved by conducting traditional component design repeatedly using a deterministic safety factor. The new component design is based on the First Order Reliability Method, which iteratively assigns the safety factor during the design process until the reliability requirement is satisfied. In addition to several iterations of deterministic component design, the other additional work is the calculation of the derivatives of the design margin with respect to the random input variables. The proposed method can be used for a wide range of component design applications. For example, if a deterministic component design is performed manually or with a spreadsheet, so is the reliability-based component design. Three examples are used to demonstrate the practicality of the new design method.

Author(s):  
Jianhua Yin ◽  
Xiaoping Du

Abstract Reliability-based design (RBD) identifies design variables that maintain reliability at a required level. For many routine component design jobs, RBD may not be practical as it requires nonlinear optimization and specific reliability methods, especially for those design jobs which are performed manually or with a spreadsheet. This work develops a practical approach to reliability-based component design so that the reliability target can be achieved by conducting traditional component design repeatedly using a deterministic safety factor. The new component design is based on the First Order Reliability Method, which iteratively assigns the safety factor during the design process until the reliability requirement is satisfied. In addition to a number of iterations of deterministic component design, the other additional work is the calculation of the derivatives of the design margin with respect to the random input variables. The proposed method can be used for a wide range of component design applications. For example, if a deterministic component design is performed manually or with a spreadsheet, so it the reliability-based component design. Three examples are used to demonstrate the practicality of the new design method.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


Author(s):  
Zunling Du ◽  
Yimin Zhang

Axial piston pumps (APPs) are the core energy conversion components in a hydraulic transmission system. Energy conversion efficiency is critically important for the performance and energy-saving of the pumps. In this paper, a time-varying reliability design method for the overall efficiency of APPs was established. The theoretical and practical instantaneous torque and flow rate of the whole APP were derived through comprehensive analysis of a single piston-slipper group. Moreover, as a case study, the developed model for the instantaneous overall efficiency was verified with a PPV103-10 pump from HYDAC. The time-variation of reliability for the pump was revealed by a fourth-order moment technique considering the randomness of working conditions and structure parameters, and the proposed reliability method was validated by Monte Carlo simulation. The effects of the mean values and variance sensitivity of random variables on the overall efficiency reliability were analyzed. Furthermore, the optimized time point and design variables were selected. The optimal structure parameters were obtained to meet the reliability requirement and the sensitivity of design variables was significantly reduced through the reliability-based robust design. The proposed method provides a theoretical basis for designers to improve the overall efficiency of APPs in the design stage.


Author(s):  
Qihang Liu ◽  
G.Q. Xu ◽  
Jie Wen ◽  
Yanchen Fu ◽  
Laihe Zhuang ◽  
...  

Abstract This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with light weight, compactness and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Kleio Avrithi ◽  
Bilal M. Ayyub

Nuclear safety-piping is designed according to the ASME Boiler and Pressure Vessel Code, Sections III, NB-, NC-, and ND-3600 that use the allowable stress design method (ASD). The potential use instead of reliability-based design equations for nuclear piping could benefit the structural design by providing, among others, consistent reliability levels for piping. For the development of such equations, not only the probabilistic characteristics of the design variables are needed, but also the quantification of the uncertainties introduced by the strength models that are used in order to estimate the resistance of pipes subjected to different loadings. This paper evaluates strength models, and therefore provides necessary information for the reliability-based design of pipes for burst or yielding due to internal pressure and for excessive bending.


Author(s):  
Rami Mansour ◽  
Mårten Olsson

In reliability-based design optimization (RBDO), an optimal design which minimizes an objective function while satisfying a number of probabilistic constraints is found. As opposed to deterministic optimization, statistical uncertainties in design variables and design parameters have to be taken into account in the design process in order to achieve a reliable design. In the most widely used RBDO approaches, the First-Order Reliability Method (FORM) is used in the probability assessment. This involves locating the Most Probable Point (MPP) of failure, or the inverse MPP, either exactly or approximately. If exact methods are used, an optimization problem has to be solved, typically resulting in computationally expensive double loop or decoupled loop RBDO methods. On the other hand, locating the MPP approximately typically results in highly efficient single loop RBDO methods since the optimization problem is not necessary in the probability assessment. However, since all these methods are based on FORM, which in turn is based on a linearization of the deterministic constraints at the MPP, they may suffer inaccuracies associated with neglecting the nonlinearity of deterministic constraints. In a previous paper presented by the authors, the Response Surface Single Loop (RSSL) Reliability-based design optimization method was proposed. The RSSL-method takes into account the non-linearity of the deterministic constraints in the computation of the probability of failure and was therefore shown to have higher accuracy than existing RBDO methods. The RSSL-method was also shown to have high efficiency since it bypasses the concept of an MPP. In RSSL, the deterministic solution is first found by neglecting uncertainties in design variables and parameters. Thereafter quadratic response surface models are fitted to the deterministic constraints around the deterministic solution using a single set of design of experiments. The RBDO problem is thereafter solved in a single loop using a closed-form second order reliability method (SORM) which takes into account all elements of the Hessian of the quadratic constraints. In this paper, the RSSL method is used to solve the more challenging system RBDO problems where all constraints are replaced by one constraint on the system probability of failure. The probabilities of failure for the constraints are assumed independent of each other. In general, system reliability problems may be more challenging to solve since replacing all constraints by one constraint may strongly increase the non-linearity in the optimization problem. The extensively studied reliability-based design for vehicle crash-worthiness, where the provided deterministic constraints are general quadratic models describing the system in the whole region of interest, is used to demonstrate the capabilities of the RSSL method for problems with system reliability constraints.


1998 ◽  
Vol 120 (3) ◽  
pp. 149-153 ◽  
Author(s):  
A. C. Morandi ◽  
P. K. Das ◽  
D. Faulkner

A reliability-based Level I design procedure is proposed for ring-stiffened cylindrical shells under external pressure. The main collapse modes and the present safety factor approach are reviewed. The major aspects involved in code development, such as the statistical properties of the basic variables, reliability methods, sensitivity studies, code format, target reliability, partial safety factor optimization, and comparison with the present practice are described. Safety margins for design are proposed which depend on the design pressure, maximum expected overdive, and shell slenderness. Some suggestions for future work are also given.


2015 ◽  
Vol 37 (2) ◽  
pp. 17-32 ◽  
Author(s):  
Wojciech Puła ◽  
Łukasz Zaskórski

Abstract The paper demonstrates how the reliability methods can be utilised in order to evaluate safety in geotechnics. Special attention is paid to the so-called reliability based design that can play a useful and complementary role to Eurocode 7. In the first part, a brief review of first- and second-order reliability methods is given. Next, two examples of reliability-based design are demonstrated. The first one is focussed on bearing capacity calculation and is dedicated to comparison with EC7 requirements. The second one analyses a rigid pile subjected to lateral load and is oriented towards working stress design method. In the second part, applications of random field to safety evaluations in geotechnics are addressed. After a short review of the theory a Random Finite Element algorithm to reliability based design of shallow strip foundation is given. Finally, two illustrative examples for cohesive and cohesionless soils are demonstrated.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Gordon J. Savage ◽  
Young Kap Son

In this paper, we present a methodology that helps select the distribution parameters in degrading multiresponse systems to improve dependability at the lowest lifetime cost. The dependability measures include both quality (soft failures) and reliability (hard failures). Associated costs of scrap, rework, and warrantee work are included. The key to the approach is the fast and efficient creation of the system cumulative distribution function through a series of time-variant limit-state functions. Probabilities are evaluated by Monte Carlo simulation although the first-order reliability method is a viable alternative. The cost objective function that is common in reliability-based design optimization is expanded to include a lifetime loss of performance cost, herein based on present worth theory (also called present value theory). An optimum design in terms of distribution parameters of the design variables is found via a methodology that involves minimizing cost under performance policy constraints over the lifetime as the system degrades. A case study of an over-run clutch provides the insights and potential of the proposed methodology.


Author(s):  
Said M. Easa

The intersection sight distance (ISD) design presented by AASHTO is based on extreme values of the component design variables such as design speed, perception–reaction time (a high percentile), and friction coefficient (a low percentile). A reliability method is presented, based on AASHTO, that does not rely on extreme values but instead considers the moments (mean and variance) of the probability distribution of each random variable. The method also accounts for correlations among the component random variables. In Cases I and II of AASHTO, the variations of the sight distance along both legs of the intersection are considered for both design and evaluation. For evaluation (involving an exiting obstruction), these variations are combined into a single variable that determines whether the corresponding sight line is obstructed. In Case III, only the sight distance leg along the major road has variations. The proposed method is straightforward and involves simple, closed-form mathematics for calculating sight distance and associated reliability. Sensitivity of ISD to various design variables is examined. ISD reliability-based values for various cases are presented from data reported in the literature, and results are compared with current AASHTO design values.


Sign in / Sign up

Export Citation Format

Share Document