ON THE ZEROS OF AN UNDAMPED THREE-DOF FLEXIBLE SYSTEM

Author(s):  
Siddharth Rath ◽  
Leqing Cui ◽  
Shorya Awtar

Abstract This paper presents an investigation of zeros in the SISO dynamics of an undamped three-DoF LTI flexible system. Of particular interest are non-minimum phase zeros, which severely impact closed-loop performance. This study uses modal decomposition and zero loci to reveal all types of zeros — marginal minimum phase (MMP), real minimum phase (RMP), real non-minimum phase (RNMP), complex minimum phase (CMP) and complex non-minimum phase (CNMP) — that can exist in the system under various parametric conditions. It is shown that if CNMP zeros occur in the dynamics of an undamped LTI flexible system, they will always occur in a quartet of CMP-CNMP zeros. Consequently, the simplest undamped LTI flexible system that can exhibit CNMP zeros in its dynamics is a three-DoF system. Motivated by practical examples of flexible systems that exhibit CNMP zeros, the undamped three-DoF system considered in this paper comprises of one rigid-body mode and two flexible modes. For this system, the following conclusions are mathematically established: (1) This system exhibits all possible types of zeros. (2) The precise conditions on modal frequencies and modal residues associated with every possible zero provide a mathematical formulation of the necessary and sufficient conditions for the existence of each type of zero. (3) Alternating signs of modal residues is a necessary condition for the presence of CNMP zeros in the dynamics of this system. Conversely, avoiding alternating signs of modal residues is a sufficient condition to guarantee the absence of CNMP zeros in this system.

2007 ◽  
Vol 7 (7) ◽  
pp. 624-638
Author(s):  
J. de Vicente

We study the separability of bipartite quantum systems in arbitrary dimensions using the Bloch representation of their density matrix. This approach enables us to find an alternative characterization of the separability problem, from which we derive a necessary condition and sufficient conditions for separability. For a certain class of states the necessary condition and a sufficient condition turn out to be equivalent, therefore yielding a necessary and sufficient condition. The proofs of the sufficient conditions are constructive, thus providing decompositions in pure product states for the states that satisfy them. We provide examples that show the ability of these conditions to detect entanglement. In particular, the necessary condition is proved to be strong enough to detect bound entangled states.


2008 ◽  
Vol 24 (3) ◽  
pp. 823-828 ◽  
Author(s):  
Henghsiu Tsai ◽  
Kung-Sik Chan

We consider the parameter restrictions that need to be imposed to ensure that the conditional variance process of a GARCH(p,q) model remains nonnegative. Previously, Nelson and Cao (1992, Journal of Business ’ Economic Statistics 10, 229–235) provided a set of necessary and sufficient conditions for the aforementioned nonnegativity property for GARCH(p,q) models with p ≤ 2 and derived a sufficient condition for the general case of GARCH(p,q) models with p ≥ 3. In this paper, we show that the sufficient condition of Nelson and Cao (1992) for p ≥ 3 actually is also a necessary condition. In addition, we point out the linkage between the absolute monotonicity of the generalized autoregressive conditional heteroskedastic (GARCH) generating function and the nonnegativity of the GARCH kernel, and we use it to provide examples of sufficient conditions for this nonnegativity property to hold.


Author(s):  
Michael J W Hall ◽  
Shuming Cheng

Abstract The Horodecki criterion provides a necessary and sufficient condition for a two-qubit state to be able to manifest Bell nonlocality via violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. It requires, however, the assumption that suitable projective measurements can be made on each qubit, and is not sufficient for scenarios in which noisy or weak measurements are either desirable or unavoidable. By characterising two-valued qubit observables in terms of strength, bias, and directional parameters, we address such scenarios by providing necessary and sufficient conditions for arbitrary qubit measurements having fixed strengths and relative angles for each observer. In particular, we find the achievable maximal values of the CHSH parameter for unbiased measurements on arbitrary states, and, alternatively, for arbitrary measurements on states with maximally-mixed marginals, and determine the optimal angles in some cases. We also show that for certain ranges of measurement strengths it is only possible to violate the CHSH inequality via biased measurements. Finally, we use the CHSH inequality to obtain a simple necessary condition for the compatibility of two qubit observables.


1992 ◽  
Vol 29 (2) ◽  
pp. 363-373 ◽  
Author(s):  
Jian Liu ◽  
Ed Susko

Two recent papers by Petruccelli and Woolford (1984) and Chan et al. (1985) showed that the key element governing ergodicity of a threshold AR(1) model is the joint behavior of the two linear AR(1) pieces falling in the two boundary threshold regimes. They used essentially the necessary and sufficient conditions for ergodicity of a general Markov chain of Tweedie (1974), (1975) in a rather clever manner. However, it is difficult to extend the results to the more general threshold ARMA models. Besides, irreducibility is also required to apply Tweedie's results. In this paper, instead of pursuing the ideas in Tweedie's results, we shall develop a criterion similar in spirit to the technique used by Beneš (1967) in the context of continuous-time Markov chains. Consequently, we derive a necessary and sufficient condition for existence of a strictly stationary solution of a general non-linear ARMA model to be introduced in Section 2 of this paper. This condition is then applied to the threshold ARMA(1, q) model to yield a sufficient condition for strict stationarity which is identical to the condition given by Petruccelli and Woolford (1984) for the threshold AR(1). Hence, the conjecture that the moving average component does not affect stationarity is partially verified. Furthermore, under an additional irreducibility assumption, ergodicity of a non-linear ARMA model is established. The paper then concludes with a necessary condition for stationarity of the threshold ARMA(1, q) model.


2005 ◽  
Vol 2005 (21) ◽  
pp. 3497-3509 ◽  
Author(s):  
Mohamed Houimdi ◽  
Hassane Zguitti

Nous étudions les propriétés spectrales locales du shift unilateral à poids opérateurs. Nous donnons une condition nécessaire et suffisante pour que l'adjoint satisfasse la propriété de l'extension unique (SVEP). Une condition suffisante pour satisfaire la propriété de Dunford (C) ainsi qu'une condition nécessaire pour satisfaire la condition de Bishop (β) seront données. Enfin, nous montrons que le shift à poids opérateurs est décomposable si, et seulement si, il est quasinilpotent.We study the local spectral properties for the unilateral shift with operator-valued weights. We give necessary and sufficient conditions for the adjoint to satisfy the SVEP. Sufficient condition to satisfy Dunford's property (C) and necessary condition to satisfy Bishop's condition (β) are given. Finally we show that the unilateral shift with operator-valued weights is decomposable if and only if it is quasinilpotent.


2019 ◽  
Vol 21 (01) ◽  
pp. 1940006
Author(s):  
Harborne W. Stuart

We provide necessary and sufficient conditions for a non-empty core in many-to-one assignment games. When players on the “many” side (buyers) are substitutes with respect to any given player on the other side (firms), we show that non-emptiness requires an additional condition that limits the competition among the buyers. When buyers are complements with respect to any given firm, a sufficient condition for non-emptiness is that buyers also be complements with respect to all of the firms, collectively. A necessary condition is that no firm can be guaranteed a profit when the core is non-empty.


1992 ◽  
Vol 29 (02) ◽  
pp. 363-373 ◽  
Author(s):  
Jian Liu ◽  
Ed Susko

Two recent papers by Petruccelli and Woolford (1984) and Chan et al. (1985) showed that the key element governing ergodicity of a threshold AR(1) model is the joint behavior of the two linear AR(1) pieces falling in the two boundary threshold regimes. They used essentially the necessary and sufficient conditions for ergodicity of a general Markov chain of Tweedie (1974), (1975) in a rather clever manner. However, it is difficult to extend the results to the more general threshold ARMA models. Besides, irreducibility is also required to apply Tweedie's results. In this paper, instead of pursuing the ideas in Tweedie's results, we shall develop a criterion similar in spirit to the technique used by Beneš (1967) in the context of continuous-time Markov chains. Consequently, we derive a necessary and sufficient condition for existence of a strictly stationary solution of a general non-linear ARMA model to be introduced in Section 2 of this paper. This condition is then applied to the threshold ARMA(1, q) model to yield a sufficient condition for strict stationarity which is identical to the condition given by Petruccelli and Woolford (1984) for the threshold AR(1). Hence, the conjecture that the moving average component does not affect stationarity is partially verified. Furthermore, under an additional irreducibility assumption, ergodicity of a non-linear ARMA model is established. The paper then concludes with a necessary condition for stationarity of the threshold ARMA(1, q) model.


1996 ◽  
Vol 06 (04) ◽  
pp. 461-486 ◽  
Author(s):  
ICHIRO SUZUKI ◽  
MASAFUMI YAMASHITA

The problem of designing a k-link robot arm confined in a convex polygon that can reach any point in the polygon starting from a fixed initial configuration is considered. The links of an arm are assumed to be all of the same length. We present a necessary condition and a sufficient condition on the shape of the given polygon for the existence of such a k-link arm for various values of k, as well as necessary and sufficient conditions for rectangles, triangles and diamonds to have such an arm. We then study the case k=2, and show that, for an arbitrary n-sided convex polygon, in O(n2) time we can decide whether there exists a 2-link arm that can reach all inside points, and construct such an arm if it exists. Finally, we prove a lower bound and an upper bound on the number of links needed to construct an arm that can reach every point in a general n-sided convex polygon, and show that the two bounds can differ by at most one. The constructive proof of the upper bound thus provides a simple method for designing a desired arm having at most k+1 links when a minimum of k links are necessary, for any k≥3. The method can be implemented to run in O(n2) time.


2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


Sign in / Sign up

Export Citation Format

Share Document