Impact of Inelastic Seismic Design Using Elastic-plastic Pipe Supports On Vibration Response of Piping Systems

Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi

Abstract This study presents the response mitigation effect of piping systems by inelastic seismic design based on elastic-plastic property of steel pipe supports. The inelastic seismic design to control vibration by absorbing energy using elastic-plastic properties of materials can be one of useful ideas. The design idea to use the elastic-plastic behavior of pipe supports is addressed in Technical Code for Seismic Design of Nuclear Power Plants (JEAC4601) published by the Japan Electric Association in Japan. Here, the component named an elastic-plastic pipe support is proposed as an energy-absorbing element. However, in order to put the inelastic seismic design using the elastic-plastic pipe supports into practical use, it is necessary to accumulate more findings related to the seismic response and the application range. This study aims to investigate the applicability of the inelastic seismic design taking the elastic-plastic pipe supports in the piping systems and to increase the basic findings. In this study, the seismic response analysis using three-dimensional piping system with an elastic-plastic pipe support was conducted. As a result, it was found that the elastic-plastic pipe support affected the seismic response largely. Additionally, the vibration characteristics, the response acceleration, and the load generated in the piping system were discussed relating to the plastic deformation and the plasticity rate of the elastic-plastic pipe support.

Author(s):  
Akihito Otani ◽  
Satoru Kai ◽  
Naoaki Kaneko ◽  
Tomoyoshi Watakabe ◽  
Masanori Ando ◽  
...  

A Code Case in the framework of JSME Nuclear Codes and Standards is being developed to incorporate a seismic design evaluation methodology for piping by means of advanced elastic-plastic response analysis methods and strain-based fatigue criteria. The Code Case as an alternative seismic design rule over the current rule will provide a more rational seismic design evaluation than the current criteria. This paper demonstrates an application result of the JSME Seismic Code Case to an actual complex piping system. The secondary coolant piping system of Japanese Fast Breeder Reactor, Monju, was selected as a representative of the complex piping systems. The elastic-plastic time history analysis for the piping system was performed and the piping system has been evaluated according to the JSME Seismic Code Case. The evaluation by the Code Case provides a reasonable result in terms of the piping fatigue evaluation that governs seismic integrity of piping systems. Moreover, it is found that the supporting forces and the response accelerations of the piping system obtained by the elastic-plastic response analysis also become more rational results than those with the current elastic response analysis. The contradiction of two requirements in piping design, flexibility for thermal expansion and rigidity for seismic response, can be effectively relaxed by use of the Code Case being developed.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi

This study describes inelastic seismic design of piping systems considering the damping effect caused by elastic–plastic property of a pipe support which is called an elastic–plastic support. Though the elastic–plastic support is proposed as inelastic seismic design framework in the Japan Electric Association code for the seismic design of nuclear power plants (JEAC4601), the seismic responses of the various piping systems with the support are unclear. In this study, the damping coefficient of a piping system is focused on, and the relation between seismic response of the piping system and elastic–plastic behavior of the elastic–plastic support was investigated using nonlinear time history analysis and complex eigenvalue analysis. The analysis results showed that the maximum seismic response acceleration of the piping system decreased largely in the area surrounded by pipe elbows including the elastic–plastic support which allowed plastic deformation. The modal damping coefficient increased a maximum of about sevenfold. Furthermore, the amount of the initial stiffness of the elastic–plastic support made a difference in the increasing tendency of the modal damping coefficient. From the viewpoint of the support model in the inelastic seismic design, the reduction behavior for the seismic response of the piping system was little affected by the 10% variation of the secondary stiffness. These results demonstrated the elastic–plastic support is a useful inelastic seismic design of piping systems on the conditions where the design seismic load is exceeded extremely.


2016 ◽  
Vol 2016.91 (0) ◽  
pp. 448
Author(s):  
Takuya SHIOMI ◽  
Tomoyuki MATSUDA ◽  
Ranma OKAZAKI ◽  
Nanako MIURA ◽  
Akira SONE

1985 ◽  
Vol 107 (2) ◽  
pp. 148-156
Author(s):  
O. Watanabe ◽  
H. Ohtsubo

The present paper describes a simplified finite element method for analysis of behavior of complex piping systems under elevated temperature. Elastic-plastic-creep deformations of a piping system under a combined moment loading can be analyzed by the present method. The system is idealized by straight and curved beams, and derivation of the finite element equation is based on the force method. The unified constitutive relations are used for creep and plastic behavior, where plastic deformation is treated as a limiting case of creep. The numerical results are compared with previous experimental ones, which verifies the validity of the proposed method. Elastic follow-up problem of a piping system of actually complex configuration is also solved by the present method.


Author(s):  
Kei Kobayashi ◽  
Takashi Satoh ◽  
Nobuyuki Kojima ◽  
Kiyoshi Hattori ◽  
Masaki Nakagawa ◽  
...  

The present design damping constants for nuclear power plant (NPP)’s piping system in Japan were developed through discussion among expert researchers, electric utilities and power plant manufactures. They are standardized in “Technical guidelines for seismic design of Nuclear Power Plants” (JEAG 4601-1991 Supplemental Edition). But some of the damping constants are too conservative because of a lack of experimental data. To improve this excessive conservatism, piping systems supported by U-bolts were chosen and U-bolt support element test and piping model excitation test were performed to obtain proper damping constants. The damping mechanism consists of damping due to piping materials, damping due to fluid interaction, damping due to plastic deformation of piping and supports, and damping due to friction and collision between piping and supports. Because the damping due to friction and collision was considered to be dominant, we focused our effort on formulating these phenomena by a physical model. The validity of damping estimation method was confirmed by comparing data that was obtained from the elemental tests and the actual scale piping model test. New design damping constants were decided from the damping estimations for piping systems in an actual plant. From now on, we will use the new design damping constants for U-bolt support piping systems, which were proposed from this study, as a standard in the Japanese piping seismic design.


Author(s):  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura ◽  
Ichiro Tamura

In the seismic response analysis of piping systems, finite element analysis is performed with analysis method guidelines [1]–[4] established based on benchmark analysis. However, since it takes a great deal of effort to carry out finite element analysis, a simplified method to analyze the seismic response of complex piping systems is required. In this research, we propose a method to reduce an equivalent spring-mass system model with low degrees of freedom, which can take into account the main mode of the complicated piping system. Simplified seismic evaluation is carried out using this spring mass system model with low degrees of freedom, and the accuracy of response evaluation is confirmed by comparison with finite element analysis.


Author(s):  
Yukio Takahashi ◽  
Yoshihiko Tanaka

It is essential to predict the behavior of nuclear piping system under seismic loading to evaluate the structural integrity of nuclear power plants. Relatively large stress cycles may be applied to the piping systems under severe seismic loading and plastic deformation may occur cyclically in some portion of the systems. Accurate description of inelastic deformation under cyclic loading is indispensable for the precise estimation of strain cycles and accumulation potentially leading to the failure due to fatigue-ratcheting interaction. Elastic-plastic constitutive models based on the nonlinear kinematic hardening rule proposed by Ohno and Wang were developed for type 316 austenitic stainless steel and carbon steel JIS STPT410 (similar to ASTM A106 Gr.B), both of which are used in piping systems in nuclear power plants. Different deformation characteristics under cyclic loading in terms of memory of prior hardening were observed on these two materials and they were reflected in the modeling. Results of simulations under various loading conditions were compared with the test data to demonstrate the high capability of the constitutive models.


Author(s):  
Takuro Kabaya ◽  
Nobuyuki Kojima ◽  
Masashi Arai ◽  
Satoru Hirouchi ◽  
Masatsugu Bando

This paper provides investigation on method of an elasto-plastic analysis for practical seismic design of nuclear piping systems, which are excited by multi-direction input. The Japan Society of Mechanical Engineers (JSME) established a task group to develop an elasto-plastic analysis method for nuclear piping systems, and prepared a case example code proposal for JSME.[1],[2] Our studies in past (ASME PVP2016-63186[3] and ASME PVP2017-65341[4]) were implemented on tests with unidirectional excitation using simple piping systems. In order to examine the applicability of the proposed case example code for JSME in piping of actual systems, it is necessary to examine cases in which there is multidirectional input excitation in piping systems in scales comparable to those of the piping in actual systems. We therefore conducted an analytical examination on demonstration of “the ultimate strength of piping system,” which was implemented at NUPEC. [5] We confirmed in the results of analytical examination that the strain range could be calculated at precision nearly equivalent to our examinations in the past, and that the draft code case was applicable. However, we also found a problem which needs to be solved. In addition, we were able to confirm that the local damping increase caused by the elasto-plastic behavior of the elbow which was subject to examination in this study was 1% or larger.


Author(s):  
Eiji Shirai ◽  
Takanori Yamada ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

On the evaluation of seismic design margin of the piping and support system in the nuclear power plant, the elasto-plastic behavior of support has played the important role in the seismic response analysis. It is desirable to establish the simple and effective non-linear modeling of the support in order to conduct the seismic response analysis considering each elasto-plastic characteristics of actual numerous supports in the piping system. In this study, the simplified modeling methodology related to the elasto-plastic behavior of the support was investigated by classifying the several non-linear types by estimating the limit load capacity of support, in which the results of non-linear type classification and accompanied failure mode were compared to the static loading tests of the support. At the results, methodology to identify the non-linear type of the support with normal bi-linear model was proposed, and it was confirmed that the non-linearity of the support was classified into the five different types.


Author(s):  
Izumi Nakamura ◽  
Masaki Shiratori ◽  
Akihito Otani ◽  
Masaki Morishita ◽  
Tadahiro Shibutani ◽  
...  

According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure and the current code design allowable stresses are very conservative. Since the stress assessment based on the elastic analysis does not reflect actual response of piping systems including plastic region, rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load are expected to be developed for piping seismic design applications. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a research activity has been planned. Through the activity, the authors intend to establish two kinds of guidelines; 1) a guideline of a standard analysis procedure to evaluate elastic-plastic behavior of piping systems under extreme seismic loads with rational and conservative margins, and 2) a guideline that provide criteria for the seismic safety assessment of piping systems by the standard analysis to evaluate elastic-plastic behavior established by the above guideline. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses for a pipe element test are described.


Sign in / Sign up

Export Citation Format

Share Document