On-Design Component-Level Multiple-Objective Optimization of a Small-Scale Cavity-Stabilized Combustor

Author(s):  
Alejandro Briones ◽  
Timothy Erdmann ◽  
Brent Rankin

Abstract This work presents an on-design component-level multiple-objective optimization of a small-scaled uncooled cavity-stabilized combustor. Optimization is performed at the maximum power condition of the engine thermodynamic cycle. The CFD simulations are managed by a supervised machine learning algorithm to divide a continuous and deterministic design space into non-dominated Pareto frontier and dominated design points. Steady, compressible three-dimensional simulations are performed using a multi-phase Realizable k-? RANS and non-adiabatic FPV combustion model. Conjugate heat transfer through the combustor liner is also considered. There are fifteen geometrical input parameters and four objective functions viz., maximization of combustion efficiency, and minimization of total pressure losses, pattern factor, and critical liner area factor. The baseline combustor design is based on engineering guidelines developed over the past two decades. The small-scale baseline design performs remarkably well. Direct optimization calculations are performed on this baseline design. In terms of Pareto optimality, the baseline design remains in the Pareto frontier throughout the optimization. However, the optimization calculations show improvement from an initial design point population to later iteration design points. The optimization calculations report other non-dominated designs in the Pareto frontier. The Euclidean distance from design points to the utopic point is used to select a "best" and "worst" design point for future fabrication and experimentation. The methodology to perform CFD optimization calculations of a small-scale uncooled combustor is expected to be useful for guiding the design and development of future gas turbine combustors.

2021 ◽  
Author(s):  
Alejandro M. Briones ◽  
Timothy J. Erdmann ◽  
Brent A. Rankin

Abstract This work presents an on-design component-level multiple-objective optimization of a small-scaled uncooled cavity-stabilized combustor. Optimization is performed at the maximum power condition of the engine thermodynamic cycle. The CFD simulations are managed by a supervised machine learning algorithm to divide a continuous and deterministic design space into non-dominated Pareto frontier and dominated design points. Steady, compressible three-dimensional simulations are performed using a multi-phase Realizable k-ε RANS and non-adiabatic FPV combustion model. Conjugate heat transfer through the combustor liner is also considered. There are fifteen geometrical input parameters and four objective functions viz., maximization of combustion efficiency, and minimization of total pressure losses, pattern factor, and critical liner area factor. The baseline combustor design is based on engineering guidelines developed over the past two decades. The small-scale baseline design performs remarkably well. Direct optimization calculations are performed on this baseline design. In terms of Pareto optimality, the baseline design remains in the Pareto frontier throughout the optimization. However, the optimization calculations show improvement from an initial design point population to later iteration design points. The optimization calculations report other non-dominated designs in the Pareto frontier. The Euclidean distance from design points to the utopic point is used to select a “best” and “worst” design point for future fabrication and experimentation. The methodology to perform CFD optimization calculations of a small-scale uncooled combustor is expected to be useful for guiding the design and development of future gas turbine combustors.


Author(s):  
Alejandro M. Briones ◽  
Markus P. Rumpfkeil ◽  
Nathan R. Thomas ◽  
Brent A. Rankin

Abstract A supervised machine learning technique namely an Adaptive Multiple Objective (AMO) optimization algorithm is used to divide a continuous and deterministic design space into non-dominated Pareto frontier and dominated design points. The effect of the initial training data quantity, i.e., computational fluid dynamics (CFD) results, on the Pareto frontier and output parameter sensitivity is explored. The optimization study is performed on a subsonic small-scale cavity-stabilized combustor. A parametric geometry is created using CAD that is coupled with a meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a post-processing tool. Steady, incompressible three-dimensional simulations are performed using a multi-phase realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach with an adiabatic flamelet progress variable (FPV). Scalable wall functions are used for modeling turbulence near the wall. For each CFD simulation four levels of adaptive mesh refinement (AMR) are utilized on the original cut-cell grid. The mesh is refined where the flow exhibits large progress variable curvature. There are fifteen geometrical input parameters and three output parameters, viz., a pattern factor proxy (maximum exit temperature), a combustion efficiency proxy (averaged exit temperature), and total pressure loss (TPL). The Pareto frontier and the input-to-output parameter sensitivities are reported for each meta-model simulation. For the investigated design space, three times the number of input parameters plus one (48) yields an optimization independent of the initial sampling. This conclusion is drawn by comparing the Pareto frontiers and global sensitivities. However, the latter provides a better metric. The relative influence of the input parameters on the outputs is assessed by using both a Spearman’s order-rank correlation approach as well as an active subspace analysis. In general, non-dominated design points exhibit persistent geometrical features such as offset opposed cavity forward and aft driver jet alignment. Larger cavities necessitate larger chutes and smaller outer liner jet diameters, whereas smaller cavities require smaller chutes and larger outer liner jet diameters. The fuel injector radial location varies, but can be located either radially inward or outward with respect to the forward dilution jet radial locations. For these non-dominated designs there is substantial burning inside and outside of the cavity. The downstream dilution jets quench the upstream hot gases.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Alejandro M. Briones ◽  
Markus P. Rumpfkeil ◽  
Nathan R. Thomas ◽  
Brent A. Rankin

Abstract Supervised machine learning is used to classify a continuous and deterministic design space into a nondominated Pareto frontier and dominated design points. The effect of the initial training data quantity on the Pareto frontier and output parameter sensitivity is explored. The study is performed with the optimization of a subsonic small-scale cavity-stabilized combustor. A 3D geometry is created and parameterized using computer aided design (CAD) that is combined with a software for meshing, which automatically transfers grids and boundary conditions to the solver and postprocessing tool. Steady, compressible three-dimensional simulations are conducted employing a multiphase Realizable k–ε Reynolds-averaged Navier–Stokes (RANS) physics with an adiabatic flamelet progress variable (FPV) model. The near-wall turbulence modeling is computed with scalable wall functions (SWFs). For each computational fluid dynamics (CFD) simulation, four levels of adaptive mesh refinement (AMR) are utilized on the original cut-cell grid. There are 15 geometrical input parameters and three output parameters, viz., a pattern factor proxy, a combustion efficiency proxy, and total pressure loss (TPL). Three times the number of input parameters plus one (48) is necessary to yield an optimization independent of the initial sampling. This conclusion is drawn by examining and comparing the Pareto frontiers and global sensitivities. However, the latter provides a better metric. The relative influence of the input parameters on the outputs is assessed by Spearman's order-rank correlation and an active subspace analysis. Some persistent geometric features for nondominated designs are also discussed.


Author(s):  
Alejandro M. Briones ◽  
David L. Burrus ◽  
Joshua P. Sykes ◽  
Brent A. Rankin ◽  
Andrew W. Caswell

A numerical optimization study is performed on a small-scale high-swirl cavity-stabilized combustor. A parametric geometry is created in CAD software that is coupled with meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a post-processing tool. Steady, incompressible three-dimensional simulations are performed using a multi-phase Realizable k-ϵ Reynolds-averaged Navier-Stokes (RANS) approach with the non-adiabatic flamelet progress variable (FPV). There are nine input parameters based on geometrical control variables. There are five output parameters, viz., pattern factor (PF), RMS of the profile factor deviation, averaged exit temperature, averaged exit swirl angle, and total pressure loss. An iterative design of experiments (DOE) with a recursive Latin Hypercube Sampling (LHS) is performed to filter the most important input parameters. The five major input parameters are found with Spearman’s order-rank correlation and R2 coefficient of determination. The five input parameters are used for the adaptive multiple objective (AMO) optimization. The AMO algorithm provided a candidate design point with the lowest weighted objective function. This design point was verified through CFD simulation. The combined filtering and optimization procedures improve the baseline design point in terms of pattern and profile factor. The former halved from that of the baseline design point whereas the latter turned from an outer peak to a center peak profile, closely mimicking an ideal profile. The exit swirl angle favorably increased 25%. The averaged exit temperature and the total pressure losses remained nearly unchanged from the baseline design point.


2019 ◽  
Author(s):  
Nathan Thomas ◽  
Markus P. Rumpfkeil ◽  
Alejandro Briones ◽  
Timothy J. Erdmann ◽  
Brent A. Rankin

Author(s):  
Alejandro M. Briones ◽  
David L. Burrus ◽  
Joshua P. Sykes ◽  
Brent A. Rankin ◽  
Andrew W. Caswell

A numerical optimization study is performed on a small-scale high-swirl cavity-stabilized combustor. A parametric geometry is created in cad software that is coupled with meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a postprocessing tool. Steady, incompressible three-dimensional simulations are performed using a multiphase Realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach with a nonadiabatic flamelet progress variable (FPV) model. There are nine geometrical input parameters. There are five output parameters, viz., pattern factor (PF), RMS of the profile factor deviation, averaged exit temperature, averaged exit swirl angle, and total pressure loss. An iterative design of experiments (DOE) with a recursive Latin hypercube sampling (LHS) is performed to filter the most important input parameters. The five major input parameters are found with Spearman's order-rank correlation and R2 coefficient of determination. The five input parameters are used for the adaptive multiple objective (AMO) optimization. This provided a candidate design point with the lowest weighted objective function, which was verified through computational fluid dynamic (CFD) simulation. The combined filtering and optimization procedures improve the baseline design point in terms of pattern and profile factor. The former halved from that of the baseline design point, whereas the latter turned from an outer peak to a center peak profile, closely mimicking an ideal profile. The exit swirl angle favorably increased 25%. The averaged exit temperature and the total pressure losses remained nearly unchanged from the baseline design point.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


2011 ◽  
Vol 20 (5) ◽  
pp. 657 ◽  
Author(s):  
Wesley J. Cole ◽  
McKaye H. Dennis ◽  
Thomas H. Fletcher ◽  
David R. Weise

Individual cuttings from five shrub species were burned over a flat-flame burner under wind conditions of 0.75–2.80 m s–1. Both live and dead cuttings were used. These included single leaves from broadleaf species as well as 3 to 5 cm-long branches from coniferous and small broadleaf species. Flame angles and flame lengths were determined by semi-automated measurements of video images. Additional data, such as times and temperatures corresponding to ignition, maximum flame height and burnout were determined using video and infrared images. Flame angles correlated linearly with wind velocity. They also correlated with the Froude number when either the flame length or flame height was used. Flame angles in individual leaf experiments were generally 50 to 70% less than flame angles derived from Froude number correlations reported in the literature for fuel-bed experiments. Although flame angles increased with fuel mass and moisture content, they were unaffected by fuel species. Flame lengths and flame heights decreased with moisture contents and wind speed but increased with mass. In most cases, samples burned with wind conditions ignited less quickly and at lower temperatures than samples burned without wind. Most samples contained moisture at the time of ignition. Results of this small-scale approach (e.g. using individual cuttings) apply to ignition of shrubs and to flame propagation in shrubs of low bulk density. This research is one of the few attempts to characterise single-leaf and small-branch combustion behaviour in wind and is crucial to the continued development of a semi-empirical shrub combustion model.


2021 ◽  
Vol 105 ◽  
pp. 104439
Author(s):  
Tram Nguyen ◽  
Toan Bui ◽  
Hamido Fujita ◽  
Tzung-Pei Hong ◽  
Ho Dac Loc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document