Towards Mechanistic Wall Heat Flux Partitioning Model for Fully Developed Nucleate Boiling

2021 ◽  
Author(s):  
Muritala A Amidu

Abstract Mechanistic models developed to predict partial nucleate boiling are not adequate for fully developed nucleate boiling due to differences in the prevailing heat transfer governing mechanisms. In place of the mechanistic model, several empirical correlations and semi-mechanistic models have been proposed over the years for the prediction of fully developed nucleate boiling as presented in this study but they are unsuitable for use in computational fluid dynamics (CFD) code. Recently, the simulation of fully developed nucleate boiling has become much more practical because of advancement in a computational method that involves the coupling of the interface capturing method (for slug bubbles) with the Eulerian multi-fluid model (for dispersed spherical bubbles). Nonetheless, there is a need for a mechanistic closure law for the fully developed nucleate boiling phenomenon that would complement this advancement in CFD. Towards this end, a mechanistic wall heat flux partitioning model for fully developed nucleate boiling is proposed in this study. This model is predicated on the hypothesis that a high heat flux nucleate boiling is distinguished by the existence of a liquid macro-layer between the heated wall and the slug or elongated bubbles and that the macro-layer is interspersed with numerous high frequency nucleate small bubbles. With this hypothesis, the heat flux generated on the heated wall is partitioned into two parts: conduction heat transfer across the macro-layer liquid film thickness and evaporation heat flux of the microlayer of the nucleating small bubbles. The proposed model is validated against experimental data.

2006 ◽  
Vol 128 (12) ◽  
pp. 1243-1256 ◽  
Author(s):  
Gopinath R. Warrier ◽  
Vijay K. Dhir

In this paper we provide a review of heat transfer and wall heat flux partitioning models/correlations applicable to subcooled forced flow nucleate boiling. Details of both empirical and mechanistic models that have been proposed in the literature are provided. A comparison of the experimental data with predictions from selected models is also included.


2016 ◽  
Vol 8 (4) ◽  
pp. 178-200 ◽  
Author(s):  
Guan Heng Yeoh ◽  
Xiaobin Zhang

The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the interfacial mass, momentum and energy exchange terms that appear in the transport equations generally require the determination of the Sauter mean diameter or interfacial area concentration, which strongly governs the fluid flow and heat transfer in the bulk liquid. In order to accommodate the dynamically changing bubble sizes that are prevalent in the bulk liquid, the mechanistic approach based on the population balance model allows the appropriate prediction of local distributions of Sauter mean diameter or interfacial area concentration, which in turn can improve the predictions of the interfacial mass, momentum and energy exchanges that occur across the interface between the phases. Need for further developments are discussed.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
H. A. El-Husayni ◽  
M. E. Taslim ◽  
D. M. Kercher

An experimental investigation was conducted to determine the effects of variations in wall thermal boundary conditions on local heat transfer coefficients in stationary and orthogonally rotating smooth wall and two opposite-wall turbulated square channels. Results were obtained for three distributions of uniform wall heat flux: asymmetric, applied to the primary wall only; symmetric, applied to two opposite walls only; and fully-symmetric, applied to all four channel walls. Measured stationary and rotating smooth channel average heat transfer coefficients at channel location L/Dh = 9.53 were not significantly sensitive to wall heat flux distributions. Trailing side heat transfer generally increased with Rotation number whereas the leading wall results showed a decreasing trend at low Rotation numbers to a minimum and then an increasing trend with further increase in Rotation number. The stationary turbulated wall heat transfer coefficients did not vary markedly with the variations in wall heat flux distributions. Rotating leading wall heat transfer decreased with Rotation number and showed little sensitivity to heat flux distributions except for the fully-symmetric heated wall case at the highest Reynolds number tested. Trailing wall heat transfer coefficients were sensitive to the thermal wall distributions generally at all Reynolds numbers tested and particularly with increasing Rotation number. While the asymmetric case showed a slight deficit in trailing wall heat transfer coefficients due to rotation, the symmetric case indicated little change whereas the fully-symmetric case exhibited an enhancement.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Nihal E. Joshua ◽  
Denesh K. Ajakumar ◽  
Huseyin Bostanci

This study experimentally investigated the effect of hydrophobic patterned surfaces in nucleate boiling heat transfer. A dielectric liquid, HFE-7100, was used as the working fluid in the saturated boiling tests. Dielectric liquids are known to have highly-wetting characteristics. They tend to fill surface cavities that would normally trap vapor/gas, and serve as active nucleation sites during boiling. With the lack of these vapor filled cavities, boiling of a dielectric liquid leads to high incipience superheats and accompanying temperature overshoots. Heater samples in this study were prepared by applying a thin Teflon (AF400, Dupont) coating on 1-cm2 smooth copper surfaces following common photolithography techniques. Matching size thick film resistors, attached onto the copper samples, generated heat and simulated high heat flux electronic devices. Tests investigated the heater samples featuring circular pattern sizes between 40–100 μm, and corresponding pitch sizes between 80–200 μm. Additionally, a plain, smooth copper surface was tested to obtain reference data. Based on data, hydrophobic patterned surfaces effectively eliminated the temperature overshoot at boiling incipience, and considerably improved nucleate boiling performance in terms of heat transfer coefficient and critical heat flux over the reference surface. Hydrophobic patterned surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.


Author(s):  
Qingjun Cai ◽  
Avijit Bhunia ◽  
Yuan Zhao

Silicon is the major material in IC manufacture. It has high thermal conductivity and is compatible with precision micro-fabrication. It also has decent thermal expansion coefficient to most semiconductor materials. These characteristics make it an ideally underlying material for fabricating micro/mini heat pipes and their wick structures. In this paper, we focus our research investigations on high heat flux phase change capacity of the silicon wick structures. The experimental wick sample is composed of silicon pillars 320μm in height and 30 ∼ 100μm in diameter. In a stainless steel test chamber, synchronized visualizations and measurements are performed to crosscheck experimental phenomena and data. Using the mono-wick structure with large silicon pillar of 100μm in diameter, the phase change on the silicon wick structure reaches its maximum heat flux at 1,130W/cm2 over a 2mm×2mm heating area. The wick structure can fully utilize the wick pump capability to supply liquid from all 360° directions to the center heating area. In contrast, the large heating area and fine silicon pillars 10μm in diameter significantly reduces liquid transport capability and suppresses generation of nucleate boiling. As a result, phase change completely relies on evaporation, and the CHF of the wick structure is reduced to 180W/cm2. An analytical model based on high heat flux phase change of mono-porous wick structures indicates that heat transfer capability is subjected to the ratio between the wick particle radius and the heater dimensions, as well as vapor occupation ratio of the porous volume. In contrast, phase change heat transfer coefficients of the wick structures essentially reflect material properties of wick structure and mechanism of two-phase interactions within wick structures.


Sign in / Sign up

Export Citation Format

Share Document