An Experimental Study On Cryogenic Spray Quenching of a Circular Metal Disk I. Effects of Mass Flux, Spray Fluid Inlet Subcooling, and Gravity

2021 ◽  
Author(s):  
Jun Dong ◽  
Hao Wang ◽  
Samuel Darr ◽  
Jason Hartwig ◽  
Jacob Chung

Abstract This is the first part of a two-paper series that reports the design, experimentation, and results of a spray quenching experiment of a circular metal disk in terrestrial gravity conditions. The objective of this experiment is to provide experimental data and corresponding analysis on the heat transfer characteristics and chilldown performance of the cryogenic spray quenching process. In this paper, the presented continuous-flow spray quenching results include the spray-cone angle visualization, spray cooling heat transfer characteristics represented by chilldown curves and boiling curves, gravity effects, and Leidenfrost rewet point temperatures. Additionally, detailed discussion is given on the film boiling heat transfer and rewet temperature in terms of various contributing factors such as gravitational acceleration, spray mass flux, and radial position on the plate. Based on experimental data, empirical correlations for film boiling heat transfer coefficient and rewet temperatures are provided. We expect that, the current terrestrial study would offer invaluable information for the design of a robust in-space cryogenic propellant storage tank spray chilldown system.

2014 ◽  
Vol 592-594 ◽  
pp. 1667-1671
Author(s):  
T. Vinoth ◽  
K. Karuppasamy ◽  
D. Santhosh Kumar ◽  
R. Dhanuskodi

In the present work, the heat transfer characteristics of supercritical pressure water are numerically investigated in an upward flow vertical smooth tube. The numerical simulations are carried out by using Ansys-Fluent solver. The objective of the present work is to investigate the effect of heat flux and mass flux on heat transfer characteristics in supercritical water. In order to perform numerical simulation, experimental data of Mokryet al.[2] is considered. Various simulations were carried out for the inlet parameters of temperature 350°C, pressure 240bar; heat flux values ranging from 190 to 884kW/m2and mass flux values ranging from 498 to 1499kg/m2s. Based on the available parameters of heat flux and mass flux, they are segregated as groups with heat flux to mass flux ratios of 0.39 and 0.67. According to computational data, the heat transfer enhancement and heat transfer deterioration phenomenon of supercritical water were analyzed and based on the comparison with experimental data; their occurrence and mechanism were addressed.


Author(s):  
Wenyu Wang ◽  
Ziyu Liang ◽  
Li Wan ◽  
Dan Liu ◽  
Dong Yang

In this study, an experimental investigation was carried out to explore the heat transfer characteristics of the smooth water wall tube of an ultra-supercritical circulating fluidized bed (CFB) boiler. The ranges of the test pressure, mass flux, and heat flux were 23–32 MPa, 550–1200 kg·m−2·s−1, and 200–560 kW·m−2, respectively. The material of the tube used in the test was 12 Gr1MoVg. The diameter and wall thickness were 30 and 5.5 mm, respectively. The length of the test section was 2 m. The effects of the pressure, mass flux, heat flux, buoyancy, and flow acceleration on the heat transfer characteristics were analyzed. The formulas of the heat transfer coefficient were fitted, and the existing classical formula was used to evaluate the experimental data. The mechanism of heat transfer enhancement and deterioration of the tube were also investigated. Results showed that at the area of supercritical pressure, the wall temperature gradually increased with the increase of enthalpy in the pseudo-enthalpy region and sharply increased with the increase of enthalpy in the low-enthalpy region (enthalpy < 1200 kJ kg−1) and high-enthalpy region (enthalpy > 2400 kJ kg−1). This phenomenon indicated that heat transfer enhancement occurs near a pseudo-critical point. The increase of heat flux resulted in rapid heat transfer deterioration. Thereafter, the wall temperature rose immediately. The deterioration was delayed with the increase of mass flux and pressure. The effect of buoyancy and flow acceleration on the heat transfer concentrated on the pseudo-critical temperature of the fluid. Among the five selected heat transfer correlations, the Jackson and Bishop correlations agreed well with the experimental data.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 927 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Xiang Ma ◽  
Lian-Xiang Ma ◽  
Wei Li ◽  
David Kukulka

An experimental investigation was conducted to explore the flow boiling heat transfer characteristics of refrigerants R134A and R410A inside a smooth tube, as well as inside two newly developed surface-enhanced tubes. The internal surface structures of the two enhanced tubes are comprised of protrusions/dimples and petal-shaped bumps/cavities. The equivalent inner diameter of all tested tubes is 11.5 mm, and the tube length is 2 m. The experimental test conditions included saturation temperatures of 6 °C and 10 °C; mass velocities ranging from 70 to 200 kg/(m2s); and heat fluxes ranging from 10 to 35 kW/m2, with inlet and outlet vapor quality of 0.2 and 0.8. It was observed that the enhanced tubes exhibit excellent flow boiling heat transfer performance. This can be attributed to the complex surface patterns of dimples and petal arrays that increase the active heat transfer area; in addition, more nucleation sites are produced, and there is also an increased interfacial turbulence. Results showed that the boiling heat transfer coefficient of the enhanced surface tubes was 1.15–1.66 times that of the smooth tubing. Also, effects of the flow pattern and saturated temperature are discussed. Finally, a comparison of several existing flow boiling heat transfer models using the data from the current study is presented.


Sign in / Sign up

Export Citation Format

Share Document