Unsteady Pressure Measurements in a Heated Rotating Cavity

Author(s):  
Richard Jackson ◽  
Hui Tang ◽  
James Scobie ◽  
Oliver Pountney ◽  
Carl Sangan ◽  
...  

Abstract The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disc surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the discs at a speed typically around 10% to 15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.

2021 ◽  
Author(s):  
Richard W. Jackson ◽  
Hui Tang ◽  
James A. Scobie ◽  
Oliver J. Pountney ◽  
Carl M. Sangan ◽  
...  

Abstract The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disc surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the discs at a speed typically around 10% to 15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.


2017 ◽  
Vol 122 (1247) ◽  
pp. 83-103 ◽  
Author(s):  
R. Saravanan ◽  
S.L.N. Desikan ◽  
T.M. Muruganandam

ABSTRACTThe present study investigates the behaviour of the shock train in a typical Ramjet engine under the influence of shock and expansion waves at the entry of a low aspect ratio (1:0.75) rectangular duct/isolator at supersonic Mach number (M = 1.7). The start/unstart characteristics are investigated through steady/unsteady pressure measurements under different back and dynamic pressures while the shock train dynamics are captured through instantaneous Schlieren flow visualisation. Two parameters, namely pressure recovery and the pressure gradient, is derived to assess the duct/isolator performance. For a given back pressure, with maximum blockage (9% above nominal), the duct/isolator flow is established when the dynamic pressure is increased by 23.5%. The unsteady pressure measurements indicate different scales of eddies above 80 Hz (with and without flap deflection). Under the no flap deflection (no back pressure) condition, the maximum fluctuating pressure component is 0.01% and 0.1% of the stagnation pressure at X/L = 0.03 (close to the entry of the duct) and X/L = 0.53 (middle of the duct), respectively. Once the flap is deflected (δ = 8°), decay in eddies by one order is noticed. Further increase in back pressure (δ ≥ 11°) leads the flow to unstart where eddies are observed to be disappeared.


2014 ◽  
Author(s):  
Ricardo Correia ◽  
Stephen E. Staines ◽  
Stephen W. James ◽  
Nicholas Lawson ◽  
Kevin Garry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document