scholarly journals Investigation of Cavitation Bubble Cloud with Discrete Lagrangian Tracking

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2684
Author(s):  
Xiuxiu Lyu ◽  
Yujie Zhu ◽  
Chi Zhang ◽  
Xiangyu Hu ◽  
Nikolaus A. Adams

In this paper, a Lagrangian-Eulerian (LE) two-way coupling model is developed to numerically study the cavitation bubble cloud. In this model, the gas-liquid mixture is treated directly as a continuous and compressible fluid and the governing equations are solved by methods in Eulerian descriptions. An isobaric closure exhibiting better consistency properties is applied to evaluate the pressure of gas-liquid mixture. The dispersed gas/vapor bubbles are tracked in a Lagrangian fashion, and their compression and expansion are described by a modified Rayleigh-Plesset equation, which considers the close-by flow properties other than these of the infinity for each bubble. The performance of the present method is validated by a number of benchmark tests. Then, this model is applied to study how the bubble cloud affects the shape and propagation of a pressure wave when the pressure pulse travels through. In the end, a three-dimensional simulation of a vapor cloud’s Rayleigh collapse is carried out, and the induced extreme pressure is discussed in detail. The total bubble number’s influence on the extreme collapse pressure and the size distribution of bubbles during the collapse are also analyzed.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 215
Author(s):  
Paul McGinn ◽  
Daniel Pearce ◽  
Yannis Hardalupas ◽  
Alex Taylor ◽  
Konstantina Vogiatzaki

This paper provides new physical insight into the coupling between flow dynamics and cavitation bubble cloud behaviour at conditions relevant to both cavitation inception and the more complex phenomenon of flow “choking” using a multiphase compressible framework. Understanding the cavitation bubble cloud process and the parameters that determine its break-off frequency is important for control of phenomena such as structure vibration and erosion. Initially, the role of the pressure waves in the flow development is investigated. We highlight the differences between “physical” and “artificial” numerical waves by comparing cases with different boundary and differencing schemes. We analyse in detail the prediction of the coupling of flow and cavitation dynamics in a micro-channel 20 m high containing Diesel at pressure differences 7 MPa and 8.5 MPa, corresponding to cavitation inception and "choking" conditions respectively. The results have a very good agreement with experimental data and demonstrate that pressure wave dynamics, rather than the “re-entrant jet dynamics” suggested by previous studies, determine the characteristics of the bubble cloud dynamics under “choking” conditions.


2018 ◽  
Vol 50 (6) ◽  
pp. 065512 ◽  
Author(s):  
Toshiyuki Ogasawara ◽  
Taisei Horiba ◽  
Taisuke Sano ◽  
Hiroyuki Takahira

2006 ◽  
Vol 119 (5) ◽  
pp. 3408-3408
Author(s):  
Teiichiro Ikeda ◽  
Shin Yoshizawa ◽  
Yoichiro Matsumoto ◽  
Michael R. Bailey ◽  
Lawrence A. Crum ◽  
...  

2017 ◽  
Vol 62 (4) ◽  
pp. 1269-1290 ◽  
Author(s):  
Eli Vlaisavljevich ◽  
Tyler Gerhardson ◽  
Tim Hall ◽  
Zhen Xu

Sign in / Sign up

Export Citation Format

Share Document