distribution estimation
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 98)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 1-10
Author(s):  
Ziheng Chao ◽  
Ren Komatsu ◽  
Hanwool Woo ◽  
Yusuke Tamura ◽  
Atsushi Yamashita ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Huan Zhou ◽  
Hao-Yu Cheng ◽  
Zheng-Lei Wei ◽  
Xin Zhao ◽  
An-Di Tang ◽  
...  

The butterfly optimization algorithm (BOA) is a swarm-based metaheuristic algorithm inspired by the foraging behaviour and information sharing of butterflies. BOA has been applied to various fields of optimization problems due to its performance. However, BOA also suffers from drawbacks such as diminished population diversity and the tendency to get trapped in local optimum. In this paper, a hybrid butterfly optimization algorithm based on a Gaussian distribution estimation strategy, called GDEBOA, is proposed. A Gaussian distribution estimation strategy is used to sample dominant population information and thus modify the evolutionary direction of butterfly populations, improving the exploitation and exploration capabilities of the algorithm. To evaluate the superiority of the proposed algorithm, GDEBOA was compared with six state-of-the-art algorithms in CEC2017. In addition, GDEBOA was employed to solve the UAV path planning problem. The simulation results show that GDEBOA is highly competitive.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1301
Author(s):  
Zedrick Paul L. Tungol ◽  
Hisatoshi Toriya ◽  
Narihiro Owada ◽  
Itaru Kitahara ◽  
Fumiaki Inagaki ◽  
...  

Fragmentation size distribution estimation is a critical process in mining operations that employ blasting. In this study, we aim to create a low-cost, efficient system for producing a scaled 3D model without the use of ground truth data, such as GCPs (Ground Control Points), for the purpose of improving fragmentation size distribution measurement using GNSS (Global Navigation Satellite System)-aided photogrammetry. However, the inherent error of GNSS data inhibits a straight-forward application in Structure-from-Motion (SfM). To overcome this, the study proposes that, by increasing the number of photos used in the SfM process, the scale error brought about by the GNSS error will proportionally decrease. Experiments indicated that constraining camera positions to locations, relative or otherwise, improved the accuracy of the generated 3D model. In further experiments, the results showed that the scale error decreased when more images from the same dataset were used. The proposed method is practical and easy to transport as it only requires a smartphone and, optionally, a separate camera. In conclusion, with some modifications to the workflow, technique, and equipment, a muckpile can be accurately recreated in scale in the digital world with the use of positional data.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Sarrut ◽  
Ane Etxebeste ◽  
Enrique Muñoz ◽  
Nils Krah ◽  
Jean Michel Létang

Monte Carlo simulation of particle tracking in matter is the reference simulation method in the field of medical physics. It is heavily used in various applications such as 1) patient dose distribution estimation in different therapy modalities (radiotherapy, protontherapy or ion therapy) or for radio-protection investigations of ionizing radiation-based imaging systems (CT, nuclear imaging), 2) development of numerous imaging detectors, in X-ray imaging (conventional CT, dual-energy, multi-spectral, phase contrast … ), nuclear imaging (PET, SPECT, Compton Camera) or even advanced specific imaging methods such as proton/ion imaging, or prompt-gamma emission distribution estimation in hadrontherapy monitoring. Monte Carlo simulation is a key tool both in academic research labs as well as industrial research and development services. Because of the very nature of the Monte Carlo method, involving iterative and stochastic estimation of numerous probability density functions, the computation time is high. Despite the continuous and significant progress on computer hardware and the (relative) easiness of using code parallelisms, the computation time is still an issue for highly demanding and complex simulations. Hence, since decades, Variance Reduction Techniques have been proposed to accelerate the processes in a specific configuration. In this article, we review the recent use of Artificial Intelligence methods for Monte Carlo simulation in medical physics and their main associated challenges. In the first section, the main principles of some neural networks architectures such as Convolutional Neural Networks or Generative Adversarial Network are briefly described together with a literature review of their applications in the domain of medical physics Monte Carlo simulations. In particular, we will focus on dose estimation with convolutional neural networks, dose denoising from low statistics Monte Carlo simulations, detector modelling and event selection with neural networks, generative networks for source and phase space modelling. The expected interests of those approaches are discussed. In the second section, we focus on the current challenges that still arise in this promising field.


2021 ◽  
Author(s):  
Nikita Ambasana ◽  
Osama W. Bhatti ◽  
Majid A. Dolatsara ◽  
Madhavan Swaminathan ◽  
Xianbo Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document