Nonlinear Model Predictive Control Experiments on a Laboratory Gas Turbine Installation

Author(s):  
H. A. van Essen ◽  
H. C. de Lange

Results on the feasibility and benefits of model based predictive control applied to a gas turbine are presented. For a laboratory gas turbine installation, the required dynamic simulation model and the real-time (nonlinear) Model Predictive Control (MPC) implementation are discussed. Results on both model validation and control performance are presented. We applied a nonlinear MPC configuration to control the laboratory gas turbine installation and succeeded in a real-time implementation. Although the available computation time for prediction and optimization of the model limits the sample time, the advantages of MPC, i.e. constraint handling, and anticipation to future (set-point) changes are fully reached, and the control performance is good. Special attention is paid to the performance of the applied filter that compensates for inevitable mismatches between model and process measurements. In general, the opportunities of model based control of turbomachinery are promising.

2001 ◽  
Vol 123 (2) ◽  
pp. 347-352 ◽  
Author(s):  
H. A. van Essen ◽  
H. C. de Lange

Results on the feasibility and benefits of model based predictive control applied to a gas turbine are presented. For a laboratory gas turbine installation, the required dynamic simulation model and the real-time (nonlinear) model predictive control (MPC) implementation are discussed. Results on both model validation and control performance are presented. We applied a nonlinear MPC configuration to control the laboratory gas turbine installation and succeeded in a real-time implementation. Although the available computation time for prediction and optimization of the model limits the sample time, the advantages of MPC, i.e. constraint handling, and anticipation to future (set-point) changes are fully reached, and the control performance is good. Special attention is paid to the performance of the applied filter that compensates for inevitable mismatches between model and process measurements. In general, the opportunities of model based control of turbomachinery are promising.


Author(s):  
Junxia Mu ◽  
David Rees

In this paper Nonlinear Model Predictive Control (NMPC) is applied to a gas turbine engine. Since the performance of model based control schemes is highly dependent on the accuracy of the process model, the estimation of global nonlinear gas turbine models using NARMAX and neural network is first examined. To solve the NMPC problem, the Newton-based Levenberg-Marquardt Approach (NLMA) with hard constraints and Sequential Quadratic Programming (SQP) with soft constraints are validated using a wide range of large random, small and ramp signal tests. It is shown that the control performance using SQP is slightly better than that of NLMA, and proposed methods are robust in the face of large disturbances and model uncertainties. The results presented illustrate the improvement in the control performance using both methods over against gain-scheduling PID controllers.


Author(s):  
B. G. Vroemen ◽  
H. A. van Essen ◽  
A. A. van Steenhoven ◽  
J. J. Kok

The feasibility of Model Predictive Control (MPC) applied to a laboratory gas turbine installation is investigated. MPC explicitly incorporates (input- and output-) constraints in its optimizations, which explains the choice for this computationally demanding control strategy. Strong nonlinearities, displayed by the gas turbine installation, cannot always be handled adequately by standard linear MPC. Therefore, we resort to nonlinear methods, based on successive linearization and nonlinear prediction as well as the combination of these. We implement these methods, using a nonlinear model of the installation, and compare them to linear MPC. It is shown that controller performance can be improved, without increasing controller execution-time excessively.


Sign in / Sign up

Export Citation Format

Share Document