The Behaviour of Creep-Fatigue Interactions in GH36 Superalloy

Author(s):  
Duan Zouxiang ◽  
Ning Youlian ◽  
He Jinrui

In this paper, the behaviour of creep-fatigue interactions in GH36 superalloy at 650°C is determined and a number of strainrange-life relationships of is given. Strain Energy Partitioning Approach (SEP), developed previously by the present authors, is applied to predict high-temperature, low-cycle fatigue life for this superalloy by comparison with Strainrange Partitioning method (SRP).

2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


2016 ◽  
Vol 713 ◽  
pp. 86-89 ◽  
Author(s):  
Ivo Šulák ◽  
Karel Obrtlík ◽  
Ladislav Čelko

The present work is focused on the study of microstructure and low cycle fatigue behavior of the first generation nickel-base superalloy IN 713LC (low carbon) and its promising second generation successor MAR-M247 HIP (hot isostatic pressing) at 900 °C. Microstructure of both alloys was studied by means of scanning electron microscopy (SEM). The microstructure of both materials is characterized by dendritic grains, carbides and casting defects. Size and morphology of precipitates and casting defects were evaluated. Fractographic observations have been made with the aim to reveal the fatigue crack initiation place and relation to the casting defects and material microstructure. Low cycle fatigue tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 900 °C in air. Hardening/softening curves, cyclic stress-strain curve and fatigue life data of both materials were obtained. Cyclic stress-strain curve of MAR M247 is shifted approximately to 120 MPa higher stress amplitudes in comparison with IN 713LC. Significantly higher fatigue life of MAR-M247 has been observed in Basquin representation. On the other hand IN 713LC shows prolonged lifetime compared with MAR-M247 in the Coffin-Manson representation. Results obtained from high temperature low cycle fatigue tests are discussed.


2011 ◽  
Vol 21 (8) ◽  
pp. 1128-1153 ◽  
Author(s):  
Shun-Peng Zhu ◽  
Hong-Zhong Huang ◽  
Victor Ontiveros ◽  
Li-Ping He ◽  
Mohammad Modarres

Probabilistic methods have been widely used to account for uncertainty of various sources in predicting fatigue life for components or materials. The Bayesian approach can potentially give more complete estimates by combining test data with technological knowledge available from theoretical analyses and/or previous experimental results, and provides for uncertainty quantification and the ability to update predictions based on new data, which can save time and money. The aim of the present article is to develop a probabilistic methodology for low cycle fatigue life prediction using an energy-based damage parameter with Bayes’ theorem and to demonstrate the use of an efficient probabilistic method, moreover, to quantify model uncertainty resulting from creation of different deterministic model parameters. For most high-temperature structures, more than one model was created to represent the complicated behaviors of materials at high temperature. The uncertainty involved in selecting the best model from among all the possible models should not be ignored. Accordingly, a black-box approach is used to quantify the model uncertainty for three damage parameters (the generalized damage parameter, Smith–Watson–Topper and plastic strain energy density) using measured differences between experimental data and model predictions under a Bayesian inference framework. The verification cases were based on experimental data in the literature for the Ni-base superalloy GH4133 tested at various temperatures. Based on the experimentally determined distributions of material properties and model parameters, the predicted distributions of fatigue life agree with the experimental results. The results show that the uncertainty bounds using the generalized damage parameter for life prediction are tighter than that of Smith–Watson–Topper and plastic strain energy density methods based on the same available knowledge.


Sign in / Sign up

Export Citation Format

Share Document