scholarly journals Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines

Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. Metwally

This work presents the results of an investigation conducted to study the effect of coal ash particles size distribution on the particle dynamics, and the resulting blade erosion in axial flow gas turbines. The particle dynamics and their blade impacts are determined from a three dimensional trajectory analysis within the turbine blade passages. The particle rebound conditions and the blade material erosion characteristics are simulated using empirical equations, derived from experimental measurements. For the typical ash particle size distribution considered in this investigation, the results demonstrate that the size distribution has a significant influence on the blade erosion intensity and pattern.

1991 ◽  
Vol 113 (4) ◽  
pp. 607-615 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. Metwally

This work presents the results of an investigation conducted to study the effect of coal ash particle size distribution on the particle dynamics, and the resulting blade erosion in axial flow gas turbines. The particle dynamics and their blade impacts are determined from a three-dimensional trajectory analysis within the turbine blade passages. The particle rebound conditions and the blade material erosion characteristics are simulated using empirical equations, derived from experimental measurements. For the typical ash particle size distribution considered in this investigation, the results demonstrate that the size distribution has a significant influence on the blade erosion intensity and pattern.


1989 ◽  
Vol 111 (3) ◽  
pp. 310-314 ◽  
Author(s):  
A. Hamed

This work presents the results of an investigation conducted to study the effect of secondary flow on blade erosion by coal ash particles in axial flow gas turbines. The particle dynamics and their blade impacts are determined from a three-dimensional trajectory analysis within the turbine blade passages. The blade material erosion behavior and the particle rebound characteristics are simulated using empirical equations derived from experimental measurements. The results demonstrate that the secondary flow has a significant influence on the blade erosion intensity and pattern for the typical ash particle size distribution considered in this investigation.


2014 ◽  
Vol 891-892 ◽  
pp. 1615-1620 ◽  
Author(s):  
Chong Yau Wong ◽  
Joan Boulanger ◽  
Gregory Short

It is known that particle size has an influence in determining the erosion rate, and hence equipment life, on a target material in single phase flows (i.e. flow of solid particles in liquid only or gas only flows). In reality single phase flow is rarely the case for field applications in the oil and gas industry. Field cases are typically multiphase in nature, with volumetric combinations of gas, liquid and sand. Erosion predictions of multiphase flows extrapolated from single phase flow results may be overly conservative. Current understanding of particle size distribution on material erosion in multiphase flows is limited. This work examines the effect of particle size distribution on material erosion of a cylindrical aluminium rod positioned in a 2" vertical pipe under slug and distributed bubble regimes using various water and air volume ratios. This is achieved through physical erosion experiments and computational fluid dynamics (CFD) simulations tailored to account for particle dynamics in multiphase flows.


2012 ◽  
Vol 268-270 ◽  
pp. 336-339
Author(s):  
Li Jun He ◽  
De Mei Xu ◽  
Nan Hu ◽  
Ting Ting Li ◽  
Jing Ming Zhong ◽  
...  

A physics model was established for describing the particle size distribution of beryllium (Be) powder produced by impact attrition milling. In this model, two factors were considered: the first, the distribution of existing state of particles with different original kinetic energy should obey the Maxwell-Boltzmann statistics after impacted, it was that, being at higher energy level made big particles unstable, which were easy to be fractured into smaller pieces in impact attrition process, this influencing factor described as the negative exponential of particles size; the second, the tendency to remain low surface energy needed particles should keep big volume as much as possible, this effect defined as the cube of particles size. The actual particle size distribution of Be powder was resulted from the competition between these two factors. Calculating result from the model was in good agreement with data from measurement.


2016 ◽  
Vol 61 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Adam Heyduk

Abstract The measurement of the particle size distribution plays an important role in mineral processing. Due to the high costs and time-consumption of the screening process, modern machine vision methods based on the acquisition and analysis of recorded photographic images. But the image analysis methods used so far, do not provide information on the three-dimensional shape of the grain. In the coal industry, the application scope of these methods is substantially limited by the low reflectivity of the black coal particle surface. These circumstances hinder proper segmentation of coal stream surface image. The limited information contained in two-dimensional image of the raw mineral stream surface, makes it difficult to identify proper size of grains partially overlapped by other particles and skewed particles. Particle height estimation based on the shadow length measurement becomes very difficult in industrial environment because of the fast movement of the conveyor belt and because of spatial arrangement of these particles, usually touching and overlapping. Method of laser triangulation connected with the movement of the conveyor belt makes it possible to create three-dimensional depth maps. Application of passive triangulation methods (e.g. stereovision) can be impeded because of the low contrast of the black coal on the black conveyor belt. This forces the use of active triangulation methods, directly identifying position of the analyzed image pixel. High contrast of the image can be obtained by a direct pointwise laser lighting. For the simultaneous identification of the entire section of the raw material stream it is useful to apply a linear laser (a planar sheet of the laser light). There have been presented basic formulas for conversion of pixel position on the camera CCD matrix to the real-word coordinates. A laboratory stand has been described. This stand includes a linear laser, two high-definition (2Mpix) cameras and stepper motor driver. The triangulation head moves on the rails along the belt conveyor section. There have been compared acquired depth maps and photographic images. Depth maps much better describe spatial arrangement of coal particles, and have a much lower noise level resulting from the specular light reflections from the shiny fragments of the particle surface. This makes possible an identification of the coal particles partially overlapped by other particles and obliquely arranged particles. It enables a partial elimination or compensation of image disturbances affecting the final result of the estimated particle size distribution. Because of the possibility of the reflected laser beam overriding by other particles it is advantageous to use a system of two cameras. Results of the experimental research confirmed the usefulness of the described method in spite of low reflectance factor of coal surface. The fast detection of changes in particle size distribution makes possible an on-line optimization of complex technological systems - especially those involving coal cleaning in jigs - thus leading to better stabilization of quality parameters of the enrichment output products. An additional application of the described method can be achieved by measuring the total volume of the stream of the transported materials. Together with the measurement signal from the belt conveyor weight it makes possible to estimate the bulk density of the raw mineral stream. The low complexity of the signal processing in the laser triangulation method is associated with the acquisition of high contrast images and analysis based on simple trigonometric dependencies.


1989 ◽  
Vol 164 ◽  
Author(s):  
E.N. Prabhakar ◽  
C.A. Huber ◽  
D. Heiman

AbstractParticle-size distribution effects on the energy levels of semiconductor quantum dots are investigated. By examining the low temperature photoluminescence spectra of microcrystals of the binary semiconductor CdSe embedded in a glass matrix, the distribution of energy levels due to three-dimensional confinement is determined. Calculations of the electron-hole pair ground state energy provide a relation between confinement energy and particle diameter. This allows conversion of the photoluminescence lineshape directly into a distribution of particle radii and facilitates analysis of the observed properties of the material. With extension to other systems the technique can become a valuable tool in the study of semiconductor microparticle composites.


2012 ◽  
Vol 190-191 ◽  
pp. 467-470
Author(s):  
Huo Ping Zhao ◽  
Chun Sheng Ye ◽  
Zi Tian Fan

In this study, three dimensional structures are fabricated by a self-developed three dimensional printing machine with eight different particle size distribution scrubbed silica sand. In order to evaluate particle size distribution effect on the properties of sand mold, the physical and mechanism properties of printed specimens, including weight, gas evolution, air permeability, tensile strength and compressive strength, were measured. The mechanism of effect was analyzed and studied. The results show that the printed specimens from the 80-140 mesh sand powder have the best comprehensive properties. Both wider and narrower particle size distribution adversely affects the properties of printed specimens.


Sign in / Sign up

Export Citation Format

Share Document