laser triangulation
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 87)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Finn Renken ◽  
Rüdiger Ulrich Franz von Bock und Polach ◽  
Jan Schubnell ◽  
Matthias Jung ◽  
Markus Oswald ◽  
...  

Commonly, to evaluate the influence of the local weld geometry in fatigue test, small-scale specimens are used, assuming those represent a longer weld adequately. In this study, a comparison between short specimens and a long weld is performed. A method is developed for the statistical evaluation of weld toe radii and angles, stress concentration factors and weld quality classes. The results show a strong sampling rate dependence and lower ISO 5817:2014 weld quality results for higher sampling rates. Comparable results between short specimens and a long weld can be achieved using modal values of the parameters assuming a lognormal distribution.


Author(s):  
Richard Fox-Ivey ◽  
Benoit Petitclerc ◽  
John Laurent

Regular inspection of tunnel surfaces is an important practice from both a safety and tunnel asset management perspective. However, inspection for cracking and spalling is still predominantly a manual task, which is time consuming, subjective, and exposes on-foot staff to risk. This presentation will explore the use of 3D laser scanning technology and artificial intelligence to automate the inspection process with a Canadian metro case study being presented.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6506
Author(s):  
Björn Brenneis ◽  
Sergej Gordeev ◽  
Sebastian Ruck ◽  
Leonid Stoppel ◽  
Wolfgang Hering

Wakes appearing downstream of disturbances on the surface of a water flow in a concave open channel were examined experimentally. The investigated channel geometry was similar to the liquid lithium target in DONES (Demonstration fusion power plant Oriented NEutron Source). The objective of the measurements was to analyze the effect of a disturbance on the downstream layer thickness. For measuring the height profiles in the channel, an optical measurement system based on laser triangulation was developed. It was shown that the wake of the undisturbed flow emerged from the nozzle corner, which was in accordance with analytical solutions. For sufficiently large disturbances at the nozzle edge, the height profiles located downstream showed symmetrical minima and maxima on both sides of the disturbance. The wake depth strongly depended on the diameter and penetration depth of the disturbance, as well as the circumferential position in the channel, which yields to a critical wake depth of one millimeter for the lithium target in DONES.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5187
Author(s):  
Víctor Meana ◽  
Eduardo Cuesta ◽  
Braulio J. Álvarez

To ensure that measurements can be made with non-contact metrology technologies, it is necessary to use verification and calibration procedures using precision artefacts as reference elements. In this environment, the need for increasingly accurate but also more cost-effective calibration artefacts is a clear demand in industry. The aim of this work is to demonstrate the feasibility of using low-cost precision spheres as reference artefacts in calibration and verification procedures of non-contact metrological equipment. Specifically, low-cost precision stainless steel spheres are used as reference artefacts. Obviously, for such spheres to be used as standard artefacts, it is necessary to change their optical behavior by removing their high brightness. For this purpose, the spheres are subjected to a manual sandblasting process, which is also a very low-cost process. The equipment used to validate the experiment is a laser triangulation sensor mounted on a Coordinate Measuring Machine (CMM). The CMM touch probe, which is much more accurate, will be used as a device for measuring the influence of sandblasting on the spheres. Subsequently, the influence of this post-processing is also checked with the laser triangulation sensor. Ultimately, the improvement in the quality of the point clouds captured by the laser sensor will be tested after removing the brightness, which distorts and reduces the quantity of points as well as the quality of the point clouds. In addition to the number of points obtained, the parameters used to study the effect of sandblasting on each sphere, both in contact probing and laser scanning, are the measured diameter, the form error, as well as the standard deviation of the point cloud regarding the best-fit sphere.


Author(s):  
Shubham Kakirde ◽  
Shubham Jain ◽  
Swaraj Kaondal ◽  
Reena Kumbhare ◽  
Rita Das

In this fast-paced world, it is inevitable that the manual labor employed in industries will be replaced by their automated counterparts. There are a number of existing solutions which deal with object dimensions estimation but only a few of them are suitable for deployment in the industry. The reason being the trade-off between the cost, time for processing, accuracy and system complexity. The proposed system aims to automate the mentioned tasks with the help of a single camera and a line laser module for each conveyor belt setup using laser triangulation method to measure the height and edge detection algorithm for measuring the length and breadth of the object. The minimal use of equipment makes the system simple, power and time efficient. The proposed system has an average error of around 3% in the dimension estimation.


Author(s):  
H. Sardemann ◽  
C. Mulsow ◽  
H.-G. Maas

Abstract. This paper will describe a novel approach for the calibration of an underwater laser triangulation system. Underwater triangulation systems, consisting of a line laser and a camera can be used to determine the geometry of submerged objects or the topography of a water body bottom. Placing camera and laser line projector inside a waterproof housing leads to refraction effects at the air-glass-water interfaces, both of the laser light-sheet and image rays. This implies a deformed laser plane in the water and a curved line on the object surface. The proposed approach strictly models the geometry between camera, laser and housing. First experiments show, that the calibration method can be applied for water depth measurements with accuracies of 0.2–0.3 mm at depths in the order of 100 mm.


Sign in / Sign up

Export Citation Format

Share Document