particles size distribution
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
V. A. Kobelev ◽  
G. A. Nechkin ◽  
G. E. Isaenko ◽  
V. V. Kirsanov

By the previous studies it was established that the character of solid fuel distribution throughout the bed height considerably effects the sintering machines productivity and the sinter quality. The purpose of the study was assessment of solid fuel distribution in the agglomerated burden throughout the height of bed at sintering machine. Sinter mix samples were taken from three sections of the bed: 150 mm - top part, 150 mm - middle part and 170 mm - bottom part at the sintering machines of NLMK. After screening the samples, particle size distribution was determined, as well as carbon content throughout the bed height and in the particles of different sizes. It was found that all solid fuel, irrespective of the size, gets balled into sinter mix granules, fine fuel (fraction -0.63 mm) was almost evenly distributed over the granules of different sizes, while coarse fuel (+3 mm) is mainly picked up by large granules. Solid fuel of -3 mm +0.63 mm fraction is mostly balled into 3-5 mm granules. Such nature of solid fuel distribution in the granules of the pelletized mix results in suboptimal distribution of fuel throughout the bed height at sintering machines No. 1, 2, despite satisfactory size segregation of the mix: it changes from low content in the top part to a higher content at the bottom of the bed. At sintering machines No. 3, 4 where there was no size segregation of the mix, fuel distribution throughout the bed height changes from optimal to non-optimal (low content in the top part). To optimize solid fuel distribution throughout the bed height with both good and poor segregation of the mix, it is necessary to reduce the content of 0-0.5 mm particles fraction in coke breeze.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1189
Author(s):  
Adoum Mahamat Ahmat ◽  
Walid Maherzi ◽  
Claude Le Milbeau ◽  
Mahfoud Benzerzour ◽  
Nor-Edine Abriak

Dredging sediments can be implemented as primary resources in several civil engineering applications, on the condition that the release of anthropogenic compounds meets environmental requirements. The remediation of sedimentary wastes constitutes therefore, a key step before valorization consideration in circular economy schemes. This study focused on Zn removal from clayey river sediments dredged in northern France (Lille, Saint-Omer and Aire-Sur-La Lys) using a Thermo-Evolved Red Mud (TERM) and a Slag Based Hydraulic Binder (SBHB). The first step consisted in investigating Zn-trapping mechanisms prior to TERM and SBHB application as Zn-stabilizers. Results underlined poorer metal retention within the most organic sediment (high fatty acids and polycyclic aromatic molecules concentrations), emphasizing the minor role of the organic fraction typology during Zn-trapping. The pollutant displayed its best binding yields within the sediment with the highest interstitial pH and specific areas, which stressed out the preponderant influence of alkalinization ability and particles size distribution. In a second step, the spiked sediments were treated with TERM and SBHB, which resulted in a substantial lowering of Zn release at 12% of stabilizer/sediment ratio. Even though the organic content role was not preeminent during the pollutant trapping, it appeared here influential as delays in removal efficiencies were observed for the most endowed sediment. Two preferential geochemical pathways were adopted during the remediation operations with significant promotive roles of basic background pH. Indeed, Zn removal with TERM consisted mainly in sorptive mechanisms involving exchanges with Ca and Mg ions, whereas binding onto SBHB was principally achieved through precipitation phenomena.


Author(s):  
S. U. Yerima ◽  
U. Y. Abdulkarim ◽  
B. I. Tijjani ◽  
U. M. Gana ◽  
M. Idris ◽  
...  

This paper investigates the Impact of relative humidity, varying the concentrations of water-soluble aerosol particle concentrations (WASO), Mineral Nuclei Mode Aerosols Particle Concentration (MINN), mineral accumulation mode, nonspherical (MIAN) aerosol particles concentrations and Mineral Coarse Mode Aerosols Particle Concentration (MICN) on the visibility and particles size distribution of desert aerosols based on microphysical properties of desert aerosols. The microphysical properties (the extinction coefficients, volume mix ratios, dry mode radii and wet mode radii) were extracted from Optical Properties of Aerosols and Clouds (OPAC 4.0) at eight relative humidities, RHs (00 to 99%) and at the spectral visible range of 0.4-0.8mm, the concentrations were varied to obtain five different models for each above-mentioned component. Regression analysis of some standard equations were used to determine the Angstrom exponent (α), the turbidity coefficient (β), the curvature (α2), humidification factor (), the mean exponent of aerosol growth curve (µ) and the mean exponent of aerosol size distributions (n). The values of angstrom exponent (α) were observed to be less than 1 throughout the five models at all RHs for the four studied components, and this signifies the dominance of coarse mode particles over fine mode particles. But the magnitude of the angstrom exponent (α) fluctuates all through the studied components except for WASO which increased with the increase in RH across the models and this also signifies the dominance of coarse mode particles with some traces of fine mode particles. The investigation also revealed that the curvature (α2) has both monomodal (negative signs) and bimodal (positive signs) types of distributions all through the five models and this also signifies the dominance of coarse mode particles with some traces of fine mode particles across the individual models for all the studied components. it was also found that the visibility decreased with the increase in RH and increased with the increase in wavelength. The investigation further revealed that the turbidity coefficient (β) fluctuates with the increase in RH and the particles concentrations, and this might be due to major coagulation and sedimentation. The analysis further found that there is a direct inverse power relation between the humidification factor and the mean exponent of aerosols size distribution with the mean exponent of aerosols growth curve. It was also found that as the magnitude of µ increased for MIAN, MINN and MICN, the effective hygroscopic growth  decreased. For WASO, it was found that as the magnitude of µ decreased, the effective hygroscopic growth  increased with the increase in particles concentrations and RH. The decreased in the magnitude of µ for WASO might be due to the fact that as we increase the non-hygroscopic particles, we decrease the deliquescence. The mean exponent of aerosol size distribution (n) being less than 3 shows foggy condition of the desert atmosphere the four investigated components and five studied models.


Author(s):  
Vuong Thi Vy Anh ◽  
Nguyen Thi Dung ◽  
Chu Ngoc Chai ◽  
Phan Thi Tuyet Mai ◽  
Nguyen Xuan Hoan

Barium titanate nanopowders, and composite materials of barium titanate/ graphene oxide (10 wt.% of graphene oxide according to the initial composite composition) were synthesized by hydrothermal method at the fixed reaction condition of 200 oC and 24 hours. The obtained powders were characterized by different techniques: X-ray diffraction, FTIR spectroscopy, Particles size distribution, and Scanning electron microscopy. Zeta potential measurement under electrophoretic mobility technique was also employed to investigate the stability of the BaTiO3 nanoparticles and composite materials of barium titanate/graphene oxide. The results showed that the BaTiO3 present with the tetragonal crystal structure (P4mm, a = 4.0000 Å, c = 4.0109 Å) and has uniform morphology with the grain sizes are in the range of 70 - 140 nm. The BaTiO3 nanoparticles were well distribution and covered on a surface of graphene oxide. The BaTiO3 nanoparticles, and BaTiO3/graphene oxide are stable in alkali, neutral media, and acidic media up to pH ~ 5.


2021 ◽  
Author(s):  
mechati boukoffa ◽  
Bachir Lamouri ◽  
Lakhdar Bouabsa ◽  
Nathalie Fagel

Abstract Forteen clay samples collected from three kaolin deposits (Tamazert, Hadj Ali and Chekfa; NE Algeria) are characterized by several techniques in order to compares them to somes kaolins used in industry especially that used in ceramics. All the samples were investigated by X-ray diffraction, Infrared absorption spectroscopy, thermal analysis (TG), plasticity, environmental scanning electron microscopy and chemical major elements analysis. The bulk mineralogical composition of all clays samples is dominated by kaolinite (21-75%), illite/ muscovite (33-76%) and quartz (7-21%). K-feldspar and plagioclase are only present in Chekfa and Hadj Ali clays with small amounts. Clay fraction (< 2µm) dominated by kaolinite and illite (98%). Chlorite and smectite are present in some samples of Chekfa and Hadj Ali clays with insignificant amount (˂1%). The particles-size distribution of all samples showed the abundance of sandy silt fraction (28-63%) and silty sand (39-64%) with moderate clayey fraction (2-7%). The chemical composition showed variable amounts of SiO2 (59-68%), Al2O3 (18-39%), Fe2O3 (.26-1.38%) and TiO2 (0.34-0.69%) in accordance with the free quartz in all studied samples. Plasticity-index (7.5-7.9%), Specific surface (28-47m2) and Cation exchange (5-11meq/100g) values are moderate in all samples. Given these properties, these clays may be suitable in bricks and ceramic product.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chuanbo Li ◽  
Yongzhi Ning ◽  
Taihong Yan ◽  
Weifang Zheng

Abstract The effects of feeding location, stirring speed and apparent average residence time on oxalate crystals size and distribution, tackiness of the product on the walls of reactor and stirring paddle were investigated in a vortex continuous precipitator at 45 °C. The results showed agglomeration happened during nucleation and crystals growth of U(IV) oxalate. Both local supersaturations and agglomeration maked the particles size distribution of U(IV) oxalate from 10–100 µm and the average sizes 35–45 µm. On the other hand, when the nucleation process were controlled to happen in the forced vortex zone, two feeding locations: (a) both oxalic acid and U(IV) nitrate solution into the forced vortex zone, (b) oxalic acid into the free vortex and U(IV) nitrate solution into the forced vortex, tackiness of the crystals on the wall of the precipitator could be effectively avoided.


2021 ◽  
Vol 249 ◽  
pp. 14007
Author(s):  
Paul Sánchez ◽  
Mathieu Renouf ◽  
Emilien Azéma ◽  
Rémy Mozul

Granular asteroids are naturally occurring gravitational aggregates (rubble piles) bound together by gravitational forces. For this reason, it is reasonable to use the theoretical concepts and numerical tools developed for granular media to study them. In this paper, we extend the field of applicability of the Contact Dynamic (CD) method, a class of non smooth discrete element approach, for the simulation of three dimensional granular asteroids. The CD method is particularly relevant to address the study of dense granular assemblies of a large number of particles of complex shape and broad particles size distribution, since it does not introduces numerical artefacts due to contact stiffness. We describe how the open source software LMGC90, interfaced with an external library for the calculation of self-gravity, is used to model the accretion process of spherical and irregular polyhedral particles.


Sign in / Sign up

Export Citation Format

Share Document