scholarly journals Tip Clearance Effect on Heat Transfer and Leakage Flows on the Shroud-Wall Surface in an Axial Flow Turbine

Author(s):  
Masaya Kumada ◽  
Satoshi Iwata ◽  
Masakazu Obata ◽  
Osamu Watanabe

An axial flow turbine for a turbocharger is used as a test turbine, and the local heat transfer coefficient on the surface of the shroud is measured under uniform heat flux conditions. The nature of the tip clearance flow on the shroud surface and a flow pattern in the downstream region of the rotor blades are studied, and measurements are obtained by using a hot-wire anemometer in combination with a periodic multi-sampling and an ensemble averaging technique. Data are obtained under on- and off-design conditions. The effects of inlet flow angle, rotational speed and tip clearance on the local heat transfer coefficient are elucidated. The mean heat transfer coefficient is correlated with the tip clearance, and the mean velocity is calculated by the velocity triangle method for approximation. A leakage flow region exists in the downstream direction beyond the middle of the wall surface opposite the rotor blade, and a leakage vortex is recognized at the suction side near the trailing edge.

1994 ◽  
Vol 116 (1) ◽  
pp. 39-45 ◽  
Author(s):  
M. Kumada ◽  
S. Iwata ◽  
M. Obata ◽  
O. Watanabe

An axial flow turbine for a turbocharger is used as a test turbine, and the local heat transfer coefficient on the surface of the shroud is measured under uniform heat flux conditions. The nature of the tip clearance flow on the shroud surface and a flow pattern in the downstream region of the rotor blades are studied, and measurements are obtained by using a hot-wire anemometer in combination with a periodic multisampling and an ensemble-averaging technique. Data are obtained under on-and off-design conditions. The effects of inlet flow angle, rotational speed, and tip clearance on the local heat transfer coefficient are elucidated. The mean heat transfer coefficient is correlated with the tip clearance, and the mean velocity is calculated by the velocity triangle method for approximation. A leakage flow region exists in the downstream direction beyond the middle of the wall surface opposite the rotor blade, and a leakage vortex is recognized at the suction side near the trailing edge.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Myeonggeun Choi ◽  
David M. Dyrda ◽  
David R. H. Gillespie ◽  
Orpheas Tapanlis ◽  
Leo V. Lewis

As a key way of improving jet engine performance, a thermal tip clearance control system provides a robust means of manipulating the closure between the casing and the rotating blade tips, reducing undesirable tip leakage flows. This may be achieved using an impingement cooling scheme on the external casing. Such systems can be optimized to increase the contraction capability for a given casing cooling flow. Typically, this is achieved by changing the cooled area and local casing features, such as the external flanges or the external cooling geometry. This paper reports the effectiveness of a range of impingement cooling arrangements in typical engine casing closure system. The effects of jet-to-jet pitch, number of jets, and inline and staggered alignment of jets on an engine representative casing geometry are assessed through comparison of the convective heat transfer coefficient distributions as well as the thermal closure at the point of the casing liner attachment. The investigation is primarily numerical, however, a baseline case has been validated experimentally in tests using a transient liquid crystal technique. Steady numerical simulations using the realizable k–ε, k–ω SST, and EARSM turbulence models were conducted to understand the variation in the predicted local heat transfer coefficient distribution. A constant mass flow rate was used as a constraint at each engine condition, approximately corresponding to a constant feed pressure when the manifold exit area is constant. Sets of local heat transfer coefficient data generated using a consistent modeling approach were then used to create reduced order distributions of the local cooling. These were used in a thermomechanical model to predict the casing closure at engine representative operating conditions.


Author(s):  
Myeonggeun Choi ◽  
David M. Dyrda ◽  
David R. H. Gillespie ◽  
Orpheas Tapanlis ◽  
Leo V. Lewis

As a key way of improving jet engine performance, a thermal tip clearance control system provides a robust means of manipulating the closure between the casing and the rotating blade tips, reducing undesirable tip leakage flows. This may be achieved using an impingement cooling scheme on the external casing. Such systems can be optimized to increase the contraction capability for a given casing cooling flow. Typically this is achieved by changing the cooled area, local casing features such as the external flanges, or the external cooling geometry. This paper reports the effectiveness of a range of impingement cooling arrangements in typical engine casing closure system. The effects of jet-to-jet pitch, number of jets, inline and staggered alignment of jets, on an engine representative casing geometry are assessed through comparison of the convective heat transfer coefficient distributions as well as the thermal closure at the point of the casing liner attachment. The investigation is primarily numerical, however, a baseline case has been validated experimentally in tests using a transient liquid crystal technique. Steady numerical simulations using the realizable k-ε, k-ω SST and EARSM turbulence models were conducted to understand the variation in the predicted local heat transfer coefficient distribution. Constant mass flow rate was used as a constraint at each engine condition, this approximately pertaining to a constant feed pressure when the manifold exit area is constant. Sets of local heat transfer coefficient data generated using a consistent modelling approach were then used to create reduced order distributions of the local cooling. These were used in a thermo-mechanical model to predict the casing closure at engine representative operating conditions.


1985 ◽  
Vol 107 (2) ◽  
pp. 321-326 ◽  
Author(s):  
E. M. Sparrow ◽  
G. T. Geiger

Wind tunnel experiments were performed to determine both the average heat transfer coefficient and the radial distribution of the local heat transfer coefficient for a circular disk facing a uniform oncoming flow. The experiments covered the range of Reynolds numbers Re from 5000 to 50,000 and were performed using the naphthalene sublimation technique. To complement the experiments, an analysis incorporating both potential flow theory and boundary layer theory was used to predict the stagnation point heat transfer. The measured average Nusselt numbers definitively resolved a deep disparity between information from the literature and yielded the correlation Nu = 1.05 Pr0.36 Re1/2. The radial distributions of the local heat transfer coefficient were found to be congruent when they were normalized by Re1/2. Furthermore, the radial profiles showed that the local coefficient takes on its minimum value at the stagnation point and increases with increasing radial distance from the center of the disk. At the outer edge of the disk, the coefficient is more than twice as large as that at the stagnation point. The theoretical predictions of the stagnation point heat transfer exceeded the experimental values by about 6 percent. This overprediction is similar to that which occurs for cylinders and spheres in crossflow.


1964 ◽  
Vol 86 (2) ◽  
pp. 259-264 ◽  
Author(s):  
R. A. Seban

Experiments on a system in which separation of a turbulent boundary layer occurred at a downward step in the surface of a plate and reattached on the plate downstream of the step have produced additional results for the local heat-transfer coefficient and for the velocity and temperature distribution in the separated and reattached regions of the flow. In neither region was there found the kind of similarity near the wall that characterizes flows that are dominated by the friction at the wall, so that even this first element of the usual rationalization of the heat transfer is unavailable for the interpretation of the results. The effect of suction or injection through a slot at the base of the step is also indicated and this demonstrates relatively small effects on both the pressure distribution and the local heat-transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document