scholarly journals New data processing of local heat transfer coefficient inside a rectangular channel

2017 ◽  
Vol 923 ◽  
pp. 012052 ◽  
Author(s):  
P Gramazio ◽  
L Vitali ◽  
D Fustinoni ◽  
A Niro
Author(s):  
Jiansheng Wang ◽  
Zhiqin Yang

The characteristics of heat transfer and flow in a rectangular channel with bottom of scale groove were investigated with numerical method. The numerical calculation was performed with large eddy simulation. A variety of small scale V-shapes groove with different of depth and space in longitudinal were employed in numerical simulation. The coherent structure near the surface of small scale groove was studied. The effect of the depth and space in longitudinal of small scale groove on coherent structure was investigated. Furthermore, the relationship between coherent structure and local heat transfer coefficient was investigated as well as. The numerical results indicate that the heat transfer performance of channel with small scale groove has been improved and the drag reduction has been gained in some case. The numerical simulation indicated that flow structure in different area of small scale groove had obvious difference and it would cause influence on local heat transfer coefficient.


1985 ◽  
Vol 107 (2) ◽  
pp. 321-326 ◽  
Author(s):  
E. M. Sparrow ◽  
G. T. Geiger

Wind tunnel experiments were performed to determine both the average heat transfer coefficient and the radial distribution of the local heat transfer coefficient for a circular disk facing a uniform oncoming flow. The experiments covered the range of Reynolds numbers Re from 5000 to 50,000 and were performed using the naphthalene sublimation technique. To complement the experiments, an analysis incorporating both potential flow theory and boundary layer theory was used to predict the stagnation point heat transfer. The measured average Nusselt numbers definitively resolved a deep disparity between information from the literature and yielded the correlation Nu = 1.05 Pr0.36 Re1/2. The radial distributions of the local heat transfer coefficient were found to be congruent when they were normalized by Re1/2. Furthermore, the radial profiles showed that the local coefficient takes on its minimum value at the stagnation point and increases with increasing radial distance from the center of the disk. At the outer edge of the disk, the coefficient is more than twice as large as that at the stagnation point. The theoretical predictions of the stagnation point heat transfer exceeded the experimental values by about 6 percent. This overprediction is similar to that which occurs for cylinders and spheres in crossflow.


1964 ◽  
Vol 86 (2) ◽  
pp. 259-264 ◽  
Author(s):  
R. A. Seban

Experiments on a system in which separation of a turbulent boundary layer occurred at a downward step in the surface of a plate and reattached on the plate downstream of the step have produced additional results for the local heat-transfer coefficient and for the velocity and temperature distribution in the separated and reattached regions of the flow. In neither region was there found the kind of similarity near the wall that characterizes flows that are dominated by the friction at the wall, so that even this first element of the usual rationalization of the heat transfer is unavailable for the interpretation of the results. The effect of suction or injection through a slot at the base of the step is also indicated and this demonstrates relatively small effects on both the pressure distribution and the local heat-transfer coefficient.


Author(s):  
M. Kumada ◽  
M. Hirata ◽  
N. Kasagi

The local heat transfer coefficient of full-coverage film-cooled wall has been measured by using the law of analogy to mass transfer. For this experiment, the technique of sublimation of naphthalene was used. The geometric shape of FCFC plate and the experimental condition were the same as those in Part 1. From these experiments, the effects of the mass flux ratio and non-dimensional injection wall temperature ratio on the local Stanton number are made clear and it is confirmed experimentally that the local Stanton number is a linear function of non-dimensional temperature ratio as expected from the analysis. Furthermore, the local heat transfer coefficient on the backside surface has been obtained and a technique for the improvement of cooling effectiveness is discussed.


Author(s):  
Ken Kuwahara ◽  
Shigeru Koyama ◽  
Kengo Kazari

In the present study, the local heat transfer and pressure drop characteristics are investigated experimentally for the flow boiling of refrigerant HFC134a in a multi-port extruded tube of 1.06mm in hydraulic diameter. The test tube is 865mm in total length made of aluminum. The pressure drop is measured at an interval of 191 mm, and the local heat transfer coefficient is measured in every subsection of 75mm in effective heating length. Experimental ranges are as follows: the mass velocity of G = 100–700 kg/m2s, the inlet temperature of Tin = 5.9–11.4 °C and inlet pressure of about 0.5 MPa. The data of pressure drop are compared with a few previous correlations for small diameter tubes, and the correlations can predict the data relatively good agreement. The data of heat transfer coefficient is compared with the correlations of Yu et al. proposed for relatively large diameter tubes. It is found that there are some differences about two phase multiplier factor of convective heat transfer between the circular channel and rectangular channel.


Sign in / Sign up

Export Citation Format

Share Document