scholarly journals Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using the Transient Liquid Crystal Technique

Author(s):  
R. F. Martinez-Botas ◽  
G. D. Lock ◽  
T. V. Jones

Heat transfer measurements have been made in the Oxford University Cold Heat Transfer Tunnel employing the transient liquid crystal technique. Complete contours of the heat transfer coefficient have been obtained on the aerofoil surfaces of a large annular cascade of high pressure nozzle guide vanes (mean blade diameter of 1.11 m and axial chord of 0.0664 m). The measurements are made at engine representative Mach and Reynolds numbers (exit Mach number 0.96 and Reynolds number 2.0 × 106). A novel mechanism is used to isolate five preheated blades in the annulus before an unheated flow of air passes over the vanes, creating a step change in heat transfer. The surfaces of interest are coated with narrow-band thermochromic liquid crystals and the colour crystal change is recorded during the run with a miniature CCD video camera. The heat transfer coefficient is obtained by solving the one dimensional heat transfer equation for all the points of interest. This paper will describe the experimental technique and present results of heat transfer and flow visualisation.

1995 ◽  
Vol 117 (3) ◽  
pp. 425-431 ◽  
Author(s):  
R. F. Martinez-Botas ◽  
G. D. Lock ◽  
T. V. Jones

Heat transfer measurements have been made in the Oxford University Cold Heat Transfer Tunnel employing the transient liquid crystal technique. Complete contours of the heat transfer coefficient have been obtained on the aerofoil surfaces of a large annular cascade of high-pressure nozzle guide vanes (mean blade diameter of 1.11 m and axial chord of 0.0664 m). The measurements are made at engine representative Mach and Reynolds numbers (exit Mach number 0.96 and Reynolds number 2.0 × 106). A novel mechanism is used to isolate five preheated blades in the annulus before an unheated flow of air passes over the vanes, creating a step change in heat transfer. The surfaces of interest are coated with narrow-band thermochromic liquid crystals and the color crystal change is recorded during the run with a miniature CCD video camera. The heat transfer coefficient is obtained by solving the one-dimensional heat transfer equation for all the points of interest. This paper will describe the experimental technique and present results of heat transfer and flow visualization.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


1998 ◽  
Vol 120 (4) ◽  
pp. 831-838 ◽  
Author(s):  
M. E. Taslim ◽  
G. J. Korotky

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of round-corner, low-aspect-ratio (ARrib = 0.667) ribs. Twelve rib geometries, comprising three rib height-to-channel hydraulic diameters (blockage ratios) of 0.133, 0.167, and 0.25 as well as three rib spacings (pitch-to-height ratios) of 5, 8.5, and 10 were investigated for two distinct thermal boundary conditions of heated and unheated channel walls. A square channel, roughened with low-aspect-ratio ribs on two opposite walls in a staggered manner and perpendicular to the flow direction, was tested. An instrumented copper rib was positioned either in the middle of the rib arrangements or in the furthest upstream location. Both rib heat transfer coefficient and channel friction factor for these low-aspect-ratio ribs were also compared with those of square ribs, reported previously by the authors. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared.


Author(s):  
Shuping P. Chen ◽  
Peiwen W. Li ◽  
Minking K. Chyu ◽  
Frank J. Cunha ◽  
William Abdel-Messeh

Described in this paper is an experimental study of heat transfer over a trailing edge configuration preceded with an internal cooling channel of pedestal array. The pedestal array consists of both circular pedestals and oblong shaped blocks. Downstream to the pedestal array, the trailing edge features pressure side cutback partitioned by the oblong shaped blocks. The local heat transfer coefficient over the entire wetted surface in the internal cooling chamber has been determined by using a “hybrid” measurement technique based on transient liquid crystal imaging. The hybrid technique employs the transient conduction model in a semi-infinite solid for resolving the heat transfer coefficient on the endwall surface uncovered by the pedestals. The heat transfer coefficient over a pedestal can be resolved by the lumped capacitance method with an assumption of low Biot number. The overall heat transfer for both the pedestals and endwalls combined shows a significant enhancement compared to the case with thermally developed smooth channel. Near the downstream most section of the suction side, the land, due to pressure side cutback, is exposed to the stream mixed with hot gas and discharged coolant. Both the adiabatic effectiveness and heat transfer coefficient on the land section are characterized by using the transient liquid crystal technique.


1997 ◽  
Vol 119 (2) ◽  
pp. 343-351 ◽  
Author(s):  
V. K. Garg ◽  
R. E. Gaugler

An existing three-dimensional Navier–Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle’s transition criterion (1991), Forest’s model for augmentation of leading edge heat transfer due to free-stream turbulence (1977), and Crawford’s model for augmentation of eddy viscosity due to film cooling (Crawford et al., 1980) are used. Use of Mayle’s and Forest’s models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60 percent on the heat transfer coefficient at the blade suction surface, and 50 percent at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.


2003 ◽  
Vol 125 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Andrew C. Chambers ◽  
David R. H. Gillespie ◽  
Peter T. Ireland ◽  
Geoffrey M. Dailey

Transient liquid crystal techniques are widely used for experimental heat transfer measurements. In many instances it is necessary to model the heat transfer resulting from the temperature difference between a mixture of two gas streams and a solid surface. To nondimensionally characterize the heat transfer from scale models it is necessary to know both the heat transfer coefficient and adiabatic wall temperature of the model. Traditional techniques rely on deducing both parameters from a single test. This is a poorly conditioned problem. A novel strategy is proposed in which both parameters are deduced from a well-conditioned three-test strategy. The heat transfer coefficient is first calculated in a single test; the contribution from each driving gas stream is then deduced using additional tests. Analytical techniques are developed to deal with variations in the temperature profile and transient start time of each flow. The technique is applied to the analysis of the heat transfer within a low aspect ratio impingement channel with initial cross flow.


2004 ◽  
Vol 126 (4) ◽  
pp. 597-603 ◽  
Author(s):  
Srinath V. Ekkad ◽  
Shichuan Ou ◽  
Richard B. Rivir

In film cooling situations, there is a need to determine both local adiabatic wall temperature and heat transfer coefficient to fully assess the local heat flux into the surface. Typical film cooling situations are termed three temperature problems where the complex interaction between the jets and mainstream dictates the surface temperature. The coolant temperature is much cooler than the mainstream resulting in a mixed temperature in the film region downstream of injection. An infrared thermography technique using a transient surface temperature acquisition is described which determines both the heat transfer coefficient and film effectiveness (nondimensional adiabatic wall temperature) from a single test. Hot mainstream and cooler air injected through discrete holes are imposed suddenly on an ambient temperature surface and the wall temperature response is captured using infrared thermography. The wall temperature and the known mainstream and coolant temperatures are used to determine the two unknowns (the heat transfer coefficient and film effectiveness) at every point on the test surface. The advantage of this technique over existing techniques is the ability to obtain the information using a single transient test. Transient liquid crystal techniques have been one of the standard techniques for determining h and η for turbine film cooling for several years. Liquid crystal techniques do not account for nonuniform initial model temperatures while the transient IR technique measures the entire initial model distribution. The transient liquid crystal technique is very sensitive to the angle of illumination and view while the IR technique is not. The IR technique is more robust in being able to take measurements over a wider temperature range which improves the accuracy of h and η. The IR requires less intensive calibration than liquid crystal techniques. Results are presented for film cooling downstream of a single hole on a turbine blade leading edge model.


Author(s):  
M. E. Taslim ◽  
G. J. Korotky

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of round-corner, low-aspect-ratio (ARrib = 0.667) ribs. Twelve rib geometries, comprising of three rib height-to-channel hydraulic diameter (blockage ratios) of 0.133, 0.167, and 0.25 as well as three rib spacings (pitch-to-height ratios) of 5, 8.5, and 10 were investigated for two distinct thermal boundary conditions of heated and unheated channel walls. A square channel, roughened with low-aspect-ratio ribs on two opposite walls in a staggered manner end perpendicular to the flow direction was tested. An instrumented copper rib was positioned either in the middle of the rib arrangements or in the furthest upstream location. Rib heat transfer coefficient as well as the channel friction factor for these low-aspect-ratio ribs were also compared with those of square ribs, reported previously by the authors. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared.


Author(s):  
Vijay K. Garg ◽  
Raymond E. Gaugler

An existing three-dimensional Navier-Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle’s transition criterion (Mayle, 1991), Forest’s model for augmentation of leading edge heat transfer due to free-stream turbulence (Forest, 1977), and Crawford’s model for augmentation of eddy viscosity due to film cooling (Crawford et al., 1980) are used. Use of Mayle’s and Forest’s models is relevant only for the ACE rotor due to the absence of shower-head cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60% on the heat transfer coefficient at the blade suction surface, and 50% at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.


Sign in / Sign up

Export Citation Format

Share Document